[1]王世杰,罗立民.联合独立成分分析和典型相关分析盲分析fMRI数据[J].东南大学学报(自然科学版),2006,36(4):652-656.[doi:10.3969/j.issn.1001-0505.2006.04.034]
 Wang Shijie,Luo Limin.Blind analysis of functional MRI Data using independent component analysis and canonical correlation analysis[J].Journal of Southeast University (Natural Science Edition),2006,36(4):652-656.[doi:10.3969/j.issn.1001-0505.2006.04.034]
点击复制

联合独立成分分析和典型相关分析盲分析fMRI数据()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
36
期数:
2006年第4期
页码:
652-656
栏目:
计算机科学与工程
出版日期:
2006-07-20

文章信息/Info

Title:
Blind analysis of functional MRI Data using independent component analysis and canonical correlation analysis
作者:
王世杰 罗立民
东南大学影像科学与技术实验室, 南京 210096
Author(s):
Wang Shijie Luo Limin
Laboratory of Image Science and Technology, Southeast University, Nanjing 210096, China
关键词:
功能磁共振成像 独立成分分析 典型相关分析 盲分析
Keywords:
functional MRI independent component analysis canonical correlation analysis blind analysis
分类号:
TP391
DOI:
10.3969/j.issn.1001-0505.2006.04.034
摘要:
为了自动识别功能信号成分,通过对灰质数据和脑脊液数据独立成分的空间相关性进行典型相关分析,有效地解决了独立成分的排序问题.提出的方法不需要任何先验信息,能够稳健地识别与实验设计相关的功能信号成分,实现了对fMRI数据的盲分析.通过对临床真实fMRI数据的分析,阐明了提出方法的有效性及可靠性.
Abstract:
In order to identify functional component automatically, the spatial correlation of independent components of gray matter data and that of cerebrospinal fluid data is analyzed using canonical correlation analysis, and the ordering of independent components is resolved effectively. The proposed method can robustly recognize the component related the functional activation paradigm without any prior information, and achieve blind analysis of functional magnetic resonance imaging(fMRI)data. The experimental results of analyzing real fMRI data show the validity and the reliability of the presented method.

参考文献/References:

[1] Ogawa S,Lee T M,Kay A R,et al.Brain magnetic resonance imaging with contrast dependent on blood oxygenation[C] //Proceedings of the National Academy of Sciences of the United States of American,1990,87(24):9868-9872.
[2] Herault C,Jutten J.Blind separation of sources,part Ⅰ:an adaptive algorithm based on neuromimetic architecture[J]. Signal Processing,1991,24(1):1-10.
[3] McKeown M J,Makeig S,Brown G G,et al.Analysis of fMRI data by blind separation into independent spatial components[J].Human Brain Mapping,1998,6(3),160-188.
[4] Youssef T,Youssef A M,LaConte S M,et al.Robust ordering of independent components in functional magnetic resonance time series data using canonical correlation analysis[C] //Proceedings of SPIE.San Diego,California USA,2003:5031,332-340.
[5] Hyvärinen A.Fast and robust fixed-point algorithms for independent component analysis[J].IEEE Transactions on Neural Network,1999,10(3):626-634.
[6] Esposito F,Formisano E,Cirillo S,et al.Criteria for the rank ordering of fMRI independent component[J]. NeuroImage,2001,13(6):S114.
[7] Moritz C H,Rogers B P,Meyerand M E.Power spectrum ranked independent component analysis of a periodic fMRI complex motor paradigm[J].Human Brain Mapping,2003,18(2):111-122.
[8] Hu X,Le T H,Parrish T,et al.Retrospective estimation and correction of physiological fluctuation in functional MRI [J]. Magnetic Resonance in Medicine,1995,34(2):201-212.
[9] Mandeep S D,John E I,James V H.Localization of cardiac-induced signal change in fMRI[J].NeuroImage,1999,9(4):407-415.
[10] Christian W,Herbert L,Thomas S,et al.On the origin of respiratory artifacts in BOLD-EPI of the human brain[J]. Magnetic Resonance Imaging,2002,20(8):575-582.
[11] 方开泰.实用多元统计分析[M].上海:华东师范大学出版社,1992:339-344.
[12] SPM.Data:single subject epoch(block)auditory fMRI activation data [EB/OL].[2005-12-04].http://www.fil.ion.ucl.ac.uk/spm/data/auditory.html.

备注/Memo

备注/Memo:
基金项目: 国家重点基础研究发展计划(973计划)资助项目(2003CB716102).
作者简介: 王世杰(1969—),男,博士,mike@seu.edu.cn; 罗立民(联系人),男,博士,教授, 博士生导师, luo.list@seu.edu.cn.
更新日期/Last Update: 2006-07-20