[1]束锋,陈明,程时昕,等.MIMO-OFDM系统低复杂度时频ML信道估计器[J].东南大学学报(自然科学版),2006,36(5):700-704.[doi:10.3969/j.issn.1001-0505.2006.05.004]
 Shu Feng,Chen Ming,Cheng Shixin,et al.Low-complexity time-frequency channel estimator ML for MIMO-OFDM system[J].Journal of Southeast University (Natural Science Edition),2006,36(5):700-704.[doi:10.3969/j.issn.1001-0505.2006.05.004]
点击复制

MIMO-OFDM系统低复杂度时频ML信道估计器()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
36
期数:
2006年第5期
页码:
700-704
栏目:
信息与通信工程
出版日期:
2006-09-20

文章信息/Info

Title:
Low-complexity time-frequency channel estimator ML for MIMO-OFDM system
作者:
束锋12 陈明2 程时昕2 孙锦涛1
1 南京理工大学电子工程与光电技术学院, 南京 210094; 2 东南大学移动通信国家重点实验室, 南京 210096
Author(s):
Shu Feng12 Chen Ming2 Cheng Shixin2 Sun Jintao1
1 School of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology, Nanjing 210094, China
2 National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China
关键词:
多输入多输出技术 正交频分复用 重叠 最大似然 信道估计
Keywords:
multiple input-multiple output orthogonal frequency division multiplexing overlapped maximum likelihood channel estimator
分类号:
TN929.5
DOI:
10.3969/j.issn.1001-0505.2006.05.004
摘要:
通过联合优化训练符号设计和ML准则, 构造了一种基于重叠训练图样的拥有低PAPR的时频信道估计器ML-A+LI.通过理论分析获得: 当训练符号矩阵等于归一化Hadamard矩阵且在子载波上等间距的摆放时,ML-A+LI估计器实现等同于正交的ML信道估计器ML-B+LI最优的MSE 性能和低复杂度.在MIMO移动信道仿真表明:ML-A+LI和ML-B+LI的BER性能介于LMMSE+LMMSE和LI+LI之间, 更接近于LMMSE+LMMSE; 当信道变化较慢时, ML-A+LI和ML-B+LI具有相同的BER 性能, 当信道变化较快时,ML-A+LI比ML-B+LI提供了更优的BER性能.
Abstract:
A low-complexity time-frequency channel estimator maximum likelihood(ML)-A+LI(linear interpolation)with overlapped training pattern(TP)and low peak-to-average power ratio(PAPR)is constructed by virtue of both optimal training pattern design and ML rule. It can achieve the optimal mean square error(MSE)performance and low complexity as ML-B+LI using orthogonal TP under the conditions that training symbol vectors are equispaced placement over subcarriers and training symbol matrix is a normalized Hadamard matrix. From simulation and analysis in multiple input-multiple output(MIMO)mobile channel, the following facts are found: ① the bit error ration(BER)performance of ML-A+LI and ML-B+LI is worse than that of LMMSE+LMMSE(linear minimum mean square error)and better than that of LI+LI, but is more close to that of LMMSE+LMMSE; ② ML-A+LI achieves the same performance as ML-B+LI for slow car speed whereas the former performs better than the latter for fast car speed.

参考文献/References:

[1] Paulraj A J,Gore D A,Nabar R U,et al.An overview of MIMO communications — a key to gigabit wireless[J].Proceedings of IEEE,2004,92(2):198-216.
[2] Stuber G L,Barry J R,Mclaughlin S W,et al.Broadband MIMO-OFDM wireless communications[J].Proceedings of IEEE,2004,92(2):271-293.
[3] Gesbert D,Shafi M,Shiu D S,et al.From theory to practice:an overview of MIMO space-time coded wireless systems[J]. IEEE JSAC,2003,21(3):281-302.
[4] Ma Xiaoli,Yang Liuqing,Giannakis G B.Optimal training for MIMO frequency-selective fading channels[J].IEEE Trans on Wireless Communication,2005,4(2):453-466.
[5] Imad Barhumi,Geert Leus,Marc Moonesn.Optimal training design for MIMO OFDM systems in mobile wireless channels[J]. IEEE Trans on Signal Procesing,2003,51(6):1615-1624.
[6] Shin M,Lee H,Chungyong Lee.Enhanced channel-estimation technique for MIMO-OFDM systems[J]. IEEE Trans on Vehicular Technology,2004,53(1):261-265.
[7] Tolochko I,Faulkner M.Real time LMMSE channel estimation for wireless OFDM systems with transmitter diversity[C] //IEEE Vehicular Technology Conference.Vancouver,Canada,2002,56(3):1555-1559.
[8] Jeon W G,Paik K H,Cho Y S.An efficient channel Estimation technique for OFDM systems with transmitter diversity[J].IEICE Trans on Communication,2001,84(10):967-974.
[9] Edfors O,Sandell M,van de Beek J J,et al.OFDM channel estimation singular value decomposition[J].IEEE Trans on Communication,1998,46(7):931-939.
[10] Negi R,Cioffi J.Pilot tone selection for channel estimation in a mobile OFDM system[J]. IEEE Trans on Consumer Electronics,1998,44(3):1122-1124.
[11] Moon T K,Stirling W C. Mathematical methods and algorithms for signal processing[M].New York:Prentice Hall,2000:422-433.
[12] Markel J D.FFT pruning[J].IEEE Trans on Audio and Electroacoustics,1971,9(12):305-311.
[13] Hottinen A,Tirkkonen O,Wichman R.Multi-antenna transceiver techniques for 3G and beyond[M].New York:John Wiley Et Sons Ltd,2003:28-29.

相似文献/References:

[1]麻清华,杨绿溪,何振亚.相关信道下宽带MIMO-OFDM系统中空时频码的分集度分析[J].东南大学学报(自然科学版),2007,37(4):549.[doi:10.3969/j.issn.1001-0505.2007.04.001]
 Ma Qinghua,Yang Luxi,He Zhenya.Diversity analysis of space-time-frequency coded broadband MIMO-OFDM system with correlation across space time and frequency[J].Journal of Southeast University (Natural Science Edition),2007,37(5):549.[doi:10.3969/j.issn.1001-0505.2007.04.001]
[2]邹应全,等.MIMO-OFDM系统中反馈插值方法和复杂度[J].东南大学学报(自然科学版),2010,40(5):885.[doi:10.3969/j.issn.1001-0505.2010.05.001]
 Zou Yingquan,Li Chunguo,et al.Interpolation of beamforming in the reduced feedback of MIMO-OFDM systems[J].Journal of Southeast University (Natural Science Edition),2010,40(5):885.[doi:10.3969/j.issn.1001-0505.2010.05.001]
[3]曹敦,孟鑫,江彬,等.基于Cholesky分解的MIMO-OFDM系统同信道干扰抑制方法[J].东南大学学报(自然科学版),2015,45(1):1.[doi:10.3969/j.issn.1001-0505.2015.01.001]
 Cao Dun,Meng Xin,Jiang Bin,et al.Cholesky-decompositon-based co-channel interference suppression method in MIMO-OFDM systems[J].Journal of Southeast University (Natural Science Edition),2015,45(5):1.[doi:10.3969/j.issn.1001-0505.2015.01.001]
[4]张行,宋康,李春国,等.MIMO-OFDM移动水声通信系统中多普勒扩展估计方案[J].东南大学学报(自然科学版),2017,47(2):215.[doi:10.3969/j.issn.1001-0505.2017.02.003]
 Zhang Xing,Song Kang,Li Chunguo,et al.Doppler scale estimation scheme for MIMO-OFDM mobile underwater acoustic communication system[J].Journal of Southeast University (Natural Science Edition),2017,47(5):215.[doi:10.3969/j.issn.1001-0505.2017.02.003]

备注/Memo

备注/Memo:
基金项目: 国家自然科学重大基金资助项目(60496311)、东南大学移动通信国家重点实验室开放课题资助项目(200609).
作者简介: 束锋(1973—), 男,博士, 副教授, fengshu@seu.edu.cn.
更新日期/Last Update: 2006-09-20