[1]徐旦华,鲍旭东,舒华忠.基于区域划分和改进C-V法的医学图像分割方法[J].东南大学学报(自然科学版),2006,36(5):863-868.[doi:10.3969/j.issn.1001-0505.2006.05.036]
 Xu Danhua,Bao Xudong,Shu Huazhong.Active contour model for medical image segmentation based on region division and improved Chan-Vese method[J].Journal of Southeast University (Natural Science Edition),2006,36(5):863-868.[doi:10.3969/j.issn.1001-0505.2006.05.036]
点击复制

基于区域划分和改进C-V法的医学图像分割方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
36
期数:
2006年第5期
页码:
863-868
栏目:
图像处理
出版日期:
2006-09-20

文章信息/Info

Title:
Active contour model for medical image segmentation based on region division and improved Chan-Vese method
作者:
徐旦华 鲍旭东 舒华忠
东南大学影像科学技术实验室, 南京 210096
Author(s):
Xu Danhua Bao Xudong Shu Huazhong
Laboratory of Image Science and Technology, Southeast University, Nanjing 210096, China
关键词:
医学图像分割 活动轮廓 水平集方法 Mumford-Shah模型 图像处理
Keywords:
medical image segmentation active contour level set method Mumford-Shah functional image processing
分类号:
TP751
DOI:
10.3969/j.issn.1001-0505.2006.05.036
摘要:
提出了基于图像区域划分和改进C-V法的活动轮廓图像分割方法.通过区域划分的方法将整幅图像的分割问题转化为在不同的子区域上分别进行的图像分割问题,并在各子区域中采用改进C-V法进行图像分割.改进的C-V方法在简化Mumford-Shah泛函的能量函数中增加距离函数惩罚项,从而将距离函数重新初始化的过程并入整个水平集框架模型中; 并在分片常数优化逼近中,添加了图像梯度信息,改变了C-V法中均值取值定义,提高了对灰度层次丰富的图像分割能力.实验表明,该方法对灰度值接近、边界模糊的医学图像有很好的分割效果.
Abstract:
The essential idea of the proposed model is to divide the image domain into multiple sub-regions, and then an improved Chan-Vese method is performed in each sub-region for image segmentation. In the improved Chan-Vese method, the penalization term for signed distance function is added to the energy function, so that a unitary level set model without re-initialization can be derived. In addition, the constant term in this model is modified by combining with the image gradient information in piecewise constant optimal approximations. This method is capable of handling changes in the topology of the evolving contour by using level set technique, and can avoid the problem that the pixels with intensity values far from the mean value of the whole image can hardly be detected. The efficiency of this method is demonstrated with numerical experiments on some medical images which have low contrast intensity or blurring boundary.

参考文献/References:

[1] Kass M,Witkin A,Terzopoulos D.Snakes:active contour models [J]. Int J Comput Vis,1988,1(4):321-331.
[2] Caselles V,Catte F,Coll T,et al.A geometric model for active contours in image processing [J]. Numer Math,1993,66(1):1-31.
[3] Caselles V,Kimmel R,Sapiro G.Geodesic active contours [J]. Int J Comput Vis,1997,22(1):61-79.
[4] Malladi R,Sethian J A,Vemuri B C.Shape modeling with front propagation:a level set approach [J]. IEEE Trans Patt Anal Mach Intell, 1995,17(2):158-175.
[5] Mumford D,Shah J.Optimal approximations by piecewise smooth functions and associated variational problems [J]. Commun Pure Appl Math,1989,42(4):577-685.
[6] Chan T,Vese L.Active contours without edges [J]. IEEE Trans Image Process,2001,10(2):266-277.
[7] Osher S,Sethian J A.Fronts propagating with curvature dependent speed:algorithms based on the Hamilton-Jacobi formulation [J]. J Comput Phys, 1988,79(1):12-49.
[8] Sethian J A.Level set methods and fast marching methods:evolving interfaces in computational geometry,fluid mechanics,computer vision and materials sciences [M].Cambridge:Cambridge University Press,1999:1-358.
[9] Li Chunming,Xu Chenyang,Gui Changfeng,et al.Level set evolution without re-initialization:a new variational formulation[J]. IEEE Int Conf CVPR, 2005,1(6):430-436.
[10] Zhao H K,Chan T,Merriman B.et al.A variational level set approach to multiphase motion [J]. J Comput Phys,1996,127(1):179-195.
[11] Peng Danping,Merriman B,Osher S,et al.A PDE-based fast local level set method [J]. J Comput Phys,1999,155(2):410-438.

备注/Memo

备注/Memo:
作者简介: 徐旦华(1969—),女,博士生; 舒华忠(联系人),男,博士,教授,博士生导师,shu.list@seu.edu.cn.
更新日期/Last Update: 2006-09-20