[1]张骥骧,达庆利.双寡头不同理性博弈模型分析[J].东南大学学报(自然科学版),2006,36(6):1029-1033.[doi:10.3969/j.issn.1001-0505.2006.06.031]
 Zhang Jixiang,Da Qingli.Analysis of duopoly game with different rationality in oligopoly market[J].Journal of Southeast University (Natural Science Edition),2006,36(6):1029-1033.[doi:10.3969/j.issn.1001-0505.2006.06.031]
点击复制

双寡头不同理性博弈模型分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
36
期数:
2006年第6期
页码:
1029-1033
栏目:
数学、物理学、力学
出版日期:
2006-11-20

文章信息/Info

Title:
Analysis of duopoly game with different rationality in oligopoly market
作者:
张骥骧 达庆利
东南大学经济管理学院, 南京 210096
Author(s):
Zhang Jixiang Da Qingli
School of Economics and Management, Southeast University, Nanjing 210096, China
关键词:
不同理性 离散动力系统 Cournot模型 混沌
Keywords:
heterogeneous expectations discrete dynamical system Cournot model chaos
分类号:
O225
DOI:
10.3969/j.issn.1001-0505.2006.06.031
摘要:
为研究双寡头垄断市场中企业产量决策行为,基于有限理性的假设,建立了一个不同理性、不同结构成本函数的双寡头博弈模型,定理证明了该模型Nash均衡点的存在性,并给出了在不同参数条件下Nash均衡点稳定性的充分条件,然后数值模拟出分支、混沌和奇异吸引子等复杂的动力学现象.分析表明寡头理性的变化会对博弈结果的稳定性产生较大影响,并可能会导致混沌的市场状态.
Abstract:
Based on the players with bounded rationality, a game model is built to analyze enterprises’ nonlinear duopoly game with heterogeneous players and different function of cost. Theorems proves that Nash equilibria of this system is existent. Under different parametric conditions, various sufficient conditions to guarantee the stability of the Nash equilibrium point are given. The complex dynamics, bifurcations, strange attractor and chaos are displayed by simulating numerically. The result shows that enterprise’s expectations have an impact on result of duopoly game and may cause a market structure to behave chaotically.

参考文献/References:

[1] Puu T.Chaos in duopoly pricing [J].Chaos,Solitons and Fractals,1991,1(6):573-581.
[2] Puu T.The chaotic duopolies revisited [J]. Journal of Economic Behavior and Organization,1998,33(3):385-394.
[3] Agiza H N.Explicit stability zones for Cournot games with 3 and 4 competitors [J]. Chaos,Solitons and Fractals,1998,9(12):1955-1966.
[4] Agiza H N.On the analysis of stability,bifurcation,chaos and chaos control of Kopel map [J].Chaos,Solitons and Fractals,1999,10(11):1909-1916.
[5] Agiza H N,Hegazi A S,Elsadany A A.The dynamics of Bowley’s model with bounded rationality [J].Chaos Solitons and Fractals,2001,12(9):1705-1717.
[6] Agiza H N,Hegazi A S,Elsadany A A.Complex dynamics and synchronization of duopoly game with bounded rationality [J]. Mathematics and Computers in Simulation,2002,58(2):133-146.
[7] Leonard D,Nishimura K.Nonlinear dynamics in the Cournot model without full information [J].Annals of Operations Research,1999,89(1):165-173.
[8] Agiza H N,Elsadany A A.Nonlinear dynamics in the Cournot duopoly game with heterogeneous players [J].Physica A,2003,320(15):512-524.
[9] Agiza H N,Elsadany A A.Chaotic dynamics in nonlinear duopoly game with heterogeneous players [J].Applied Mathematics and Computation,2004,149(3):843-860.
[10] 易余胤,盛昭瀚,肖条军.具溢出效应的有限理性双寡头博弈的动态演化[J].系统工程学报,2004,19(3):244-250.
  Yi Yuyin,Sheng Zhaohan,Xiao Tiaojun.Dynamics of duopoly model with bounded rationality and spillover effect [J].Journal of Systems Engineering,2004,19(3):244-250.(in Chinese)
[11] Dixit A.Comparative statics for oligopoly [J].International Economic Review,1986,27(3):107-122.
[12] Bischi G I,Kopel M.Equilibrium selection in a nonlinear duopoly game with adaptive expectations [J].Journal of Economic Behavior and Organization,2001,46(1):73-100.
[13] Bischi G I,Naimzada A. Advanced in dynamics games and application [M].Basel:Birkhauser,1999.
[14] Attractors T P. Bifurcations and chaos:nonlinear phenomena in economics[M].Berlin:Springer,2000.

备注/Memo

备注/Memo:
基金项目: 高等学校博士学科点专项科研基金资助项目(20030286008).
作者简介: 张骥骧(1978—),男,博士生; 达庆利(联系人),男,教授,博士生导师,dql@public1.ptt.js.cn.
更新日期/Last Update: 2006-11-20