# [1]许叶军,达庆利.TFOWA算子及其在决策中的应用[J].东南大学学报(自然科学版),2006,36(6):1034-1038.[doi:10.3969/j.issn.1001-0505.2006.06.032] 　Xu Yejun,Da Qingli.Trapezoidal fuzzy ordered weighted averaging operator and its application to decision making[J].Journal of Southeast University (Natural Science Edition),2006,36(6):1034-1038.[doi:10.3969/j.issn.1001-0505.2006.06.032] 点击复制 TFOWA算子及其在决策中的应用() 分享到： var jiathis_config = { data_track_clickback: true };

36

2006年第6期

1034-1038

2006-11-20

## 文章信息/Info

Title:
Trapezoidal fuzzy ordered weighted averaging operator and its application to decision making

1 东南大学经济管理学院, 南京 210096; 2 南京林业大学经济管理学院, 南京 210037
Author(s):
1 School of Economics and Management, Southeast University, Nanjing 210096, China
2 College of Economics and Management, Nanjing Forestry University, Nanjing 210037,China

Keywords:

C934
DOI:
10.3969/j.issn.1001-0505.2006.06.032

Abstract:
A kind of uncertain multi-attribute decision-making problems is studied, in which the information about the attribute weights is completely unknown and the attribute values are in the forms of trapezoidal fuzzy numbers. Some formulas for normalizing the decision making matrix with trapezoidal fuzzy numbers are given. The ordered weighted averaging(OWA)operator is extended to accommodate uncertain condition where all input arguments take the forms of trapezoidal fuzzy numbers. A trapezoidal fuzzy ordered weighted averaging(TFOWA)operator and its application procedure are proposed, and a method based on the TFOWA operator for aggregating information in decision making is presented. The character of TFOWA operator lies in fully use of uncertainty of trapezoidal fuzzy numbers, so it can reflect the complexity of real world and mistiness of human thought and make the decision making accord with the fact. Finally, a numerical example is given to show the feasibility and effectiveness of the method.

## 参考文献/References:

[1] Yager R R.On ordered weighted averaging aggregation operators in multicriteria decision making[J]. IEEE Transactions on Systems,Man and Cybernetics,1988,18(1):183-190.
[2] Xu Z S,Da Q L.The uncertain OWA operator[J]. International Journal of Intelligent Systems,2002,17(6):569-575.
[3] Xu Z S,Da Q L.The ordered weighted geometric averaging operators[J]. International Journal of Intelligent Systems,2002,17(7):709-716.
[4] Herrara F H,Viedma E,Verdegay J L.Direct approach processes in group decision making using ligustic OWA operators [J]. Fuzzy Sets and Systems,1996,79(2):175-190.
[5] Xu Z S,Da Q L.An overview of operators for aggregating information [J]. International Journal of Intelligent Systems,2003,18(9):953-969.
[6] Yager R R,Kacpizyk J.The ordered weighred averaging operator:theory and applications [M].Boston,MA:Kluwer Academic Publishers,1997:10-50.
[7] 许叶军,达庆利.一种不确定型OWGA算子及其在决策中的应用[J].系统工程与电子技术,2005,27(6):1038-1040.
Xu Yejun,Da Qingli.Uncertain ordered weighted geometric averaging operator and its application to decision making[J].Systems Engineering and Electronics,2005,27(6):1038-1040.(in Chinese)
[8] 许叶军,达庆利.上升有序加权欧氏平均算子及其在决策中的应用[J].南京工程学院学报:自然科学版,2004,2(3):35-39.
Xu Yejun,Da Qingli.The ascending ordered weighted euclid averaging operator and its application to decision making[J]. Journal of Nanjing Institute of Technology:Nature Science Edition,2004,2(3):35-39.(in Chinese)
[9] Wang Y,Parkan C.A minimax disparity approach for obtaining OWA operator weights[J]. Information Sciences,2005,175(1):20-29.
[10] Chen S M.Evaluating weapon systems using fuzzy arithmetic operations [J]. Fuzzy Sets and Systems,1996,77(3):265-276.
[11] Gu X-B,Zhu Q-X.Fuzzy multi-attribute decision-making method based on eigenvector of fuzzy attribute evaluation space[J]. Decision Support Systems,2006,41(2):400-410.
[12] 张文红,陈森发.混合指标层次模糊决策法研究[J].管理科学学报,2005,8(1):7-11,41.
Zhang Wenhong,Chen Senfa.Research on hybrid index hierarchy fuzzy decision-making method[J]. Journal of Management Sciences in China,2005,8(1):7-11,41.(in Chinese)
[13] 高建.中国企业技术创新分析[M].北京:清华大学出版社,1997.