# [1]何钢,廖文和,刘浩.应用在联合细分曲面的离散PDE光顺方法[J].东南大学学报(自然科学版),2007,37(1):35-39.[doi:10.3969/j.issn.1001-0505.2007.01.009] 　He Gang,Liao Wenhe,Liu Hao.Application of discrete PDE fairing method to combined subdivision surface[J].Journal of Southeast University (Natural Science Edition),2007,37(1):35-39.[doi:10.3969/j.issn.1001-0505.2007.01.009] 点击复制 应用在联合细分曲面的离散PDE光顺方法() 分享到： var jiathis_config = { data_track_clickback: true };

37

2007年第1期

35-39

2007-01-20

## 文章信息/Info

Title:
Application of discrete PDE fairing method to combined subdivision surface

Author(s):
College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Keywords:

TP391.7
DOI:
10.3969/j.issn.1001-0505.2007.01.009

Abstract:
Discrete partial differential equation(PDE)fairing method is directly applied to fair the control mesh of combine subdivision surface. Bounded by control edges related with curves, control mesh is partitioned into submeshes without overlapping. By solving discrete PDE the ideal curvature of single submesh can be obtained. The adjustment of the control vertexes at their normal will make the actual discrete curvature approach to the ideal curvature. While fairing the submeshes separately at different subdivision level, the local and global fairing of control mesh is achieved, and the typical concave phenomenon in combined subdivision surface is removed. The limited surface reaches G2 continuity except at extraordinary vertex. The method improves combined subdivision surface’s quality and extends the use of combined subdivision.

## 参考文献/References:

[1] Ma Weiyin.Subdivision surfaces for CAD:an overview[J].Computer Aided Design,2005,37(7):693-709.
[2] Levin A.Interpolating nets of curves by smooth subdivision surfaces[C] //Proceedings of the ACM SIGGRAPH Conference on Computer Graphics.New York:ACM,1999:57-64.
[3] Levin A.Combined subdivision scheme[D].Israel:Tel-Aviv University,2000.
[4] Kuragano J,Takarada Y,Suzuki H,et al.Subdivision surface generation from a set of unconnected curves[J].Journal of the Japan Society of Precision Engineering,2003,69(9):1264-1269.
[5] Halstead M,Kass M,de Rose T.Efficient,fair interpolation using Catmull-Clark surfaces[J].Computer Graphics,1993,27(3):35-44.
[6] Zhou Hai,Zhou Laishui.Novel method for exactly evaluating the energy of Catmull-Clark subdivision surfaces[J]. Journal of Southeast University:English Edition,2005,21(4):453-458.
[7] Desbrun M,Meyer M,Schroder Peter,et al.Implicit fairing of irregular meshes using diffusion and curvature flow[C] //Proceeding of the ACM SIGGRAPH Conference on Computer Graphics.New York:ACM,1999:317-324.
[8] Zhao Huanxi,Xu Guoliang.Triangular surface mesh fairing via Gaussian curvature flow[J]. Journal of Computational and Applied Mathematics,2006,195(2):300-311.
[9] Schneider R,Kobbelt L.Geometric fairing of irregular meshes for free-form surface design[J].Computer Aided Geometric Design,2001,18(4):359-379.
[10] Xu Guoliang.Discrete Laplace-Beltrami operators and their convergence[J]. Computer Aided Geometric Design,2004,21(8):767-784.
[11] Bloor M I G,Wilson M J.Using partial differential equations to generate free-form surfaces[J].Computer-Aided Design,1990,22(4),202-212.
[12] 童伟华,陈发来,冯玉瑜.基于偏微分方程的隐式曲面光顺方法[J].计算机学报,2004,27(9):1264-1271.
Tong Weihua,Chen Falai,Feng Yuyu.Fairing of implicit surface via partial differential equations[J]. Chinese Journal of Computers,2004,27(9):1264-1271.(in Chinese)
[13] Rumpf M.Surface processing by partial differential equation[C] //Proceedings of Geometric Modeling and Processing.Los Alamitos:IEEE Computer Society,2004:13-15.