[1]陈杭,文峰,李顶立,等.基于RR间期一阶差分的新型散点图心率变异性分析[J].东南大学学报(自然科学版),2007,37(3):395-398.[doi:10.3969/j.issn.1001-0505.2007.03.008]
 Chen Hang,Wen Feng,Li Dingli,et al.Analysis of heart rate variability using first order difference plot based on RR intervals[J].Journal of Southeast University (Natural Science Edition),2007,37(3):395-398.[doi:10.3969/j.issn.1001-0505.2007.03.008]
点击复制

基于RR间期一阶差分的新型散点图心率变异性分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
37
期数:
2007年第3期
页码:
395-398
栏目:
生物医学工程
出版日期:
2007-05-20

文章信息/Info

Title:
Analysis of heart rate variability using first order difference plot based on RR intervals
作者:
陈杭1 文峰2 李顶立1 顾斐2 徐秋萍3 叶树明1
1 浙江大学生物医学工程与仪器科学学院, 杭州 310027; 2 浙江大学生命科学学院, 杭州 310027; 3 浙江大学邵逸夫医院, 杭州 310027
Author(s):
Chen Hang1 Wen Feng2 Li Dingli1 Gu Fei2 Xu Qiuping3 Ye Shuming1
1 College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
2 College of Life Sciences, Zhejiang University, Hangzhou 310027, China
3 Hospital of Shao Yifu, Zhejiang University, Hangzhou 310027, China
关键词:
一阶差分散点图 Poincare散点图 早搏 二联律 三联律
Keywords:
first order difference plot Poincare plot premature beat bigeminy trigeminy
分类号:
R318.11
DOI:
10.3969/j.issn.1001-0505.2007.03.008
摘要:
在Poincare散点图的基础上,提出了基于RR间期的一阶差分散点图的新型分析方法.一阶差分散点图将RR间期作一阶差分以形成新的序列,再按Poincare方式作图,凸现了RR间期变异的信息,并以特殊区域反映在散点图上,通过图示可以挖掘出更多的心率变异信息,对非偶联的早搏、偶联性质的二联律和三联律早搏能分别显示出特有的图形特征,从而做出比Poincare散点图更好的鉴别.而在分析混合型早搏时,一阶差分散点图鉴别结果更好.
Abstract:
A new approach of plot by first order difference based on RR intervals, which is related to the Poincare plot analysis is proposed. While plotting with the senies of RR intervals by first order difference, it may form some special areas to express information about HRV(heart rate variability). Compared with Poincare plot the first order difference plot is better at time serial difference analysis. It is able to investigate deep information of heart rate variability. It has a sensitivity to find isolated premature beats without bigeminy or trigeminy, and also find atrial or ventricular bigeminy and trigeminy. The results show that this method has a better performance to distinguish premature beats by bigeminy or trigeminy.

参考文献/References:

[1] Singh D,Vinod K.Effect of RR segment duration on short-term HRV assessment using Poincare plot [C] //International Conference on Intelligent Sensing and Information Processing,ICISIP’05. Chennai,India,2005:430-434.
[2] Brennan M,Palaniswami M,Kamen P.New insights into the relationship between Poincare plot geometry and linear measures of heart rate variability [C] //23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society.Istanbul,Turkey,2001:526-529.
[3] Mooney D M,Groome L J,Bentz L S,et al.Poincare analysis of fetal heart rate pattern:effect of observation period [C] //21st Annual International Conference of the IEEE Engineering in Medicine and Biology Society.Montreal,Can,1995:1471-1472.
[4] Haaksma J,Brouwer J,Dijk W A,et al.The dimension of 2D and 3D Poincare plots obtained from 24 hour ECG registrations [C] //Proceeding of the 2002 Computers in Cardiology.Memphis,US,2002,29:453-456.
[5] Baranowski R,Zebrowski J J,Poplawska W.3-dimensional Poincare plots of the QT intervals-an approach to nonlinear QT analysis [C] // Proceeding of the 1995 Computers in Cardiology.Vienna,Austria,1995:789-792.
[6] D’Addio G,Pinna G D,Maestri R.Correlation between power-law behavior and Poincare plots of heart rate variability in congestive heart failure patients [C] // The 26th Annual Meeting:Computers in Cardiology.Hannover,Ger,1999:611-614.
[7] 徐秋萍,张辉,葛霁光,等.与冠脉病变程度相关的线性和非线性心率变异分析[J].中华物理医学学报,1997,19(6):65.
  Xu Qiuping,Zhang Hui,Ge Jiguang,et al.Liner and nonlinear study of heart rate variability related with degree of coronary artery occlusion [J]. Hinese Journal of Physical Medicine and Rehabilitation,1997,19(6):65.(in Chinese)
[8] Strumillo P,Ruta J.Poincare mapping for detecting abnormal dynamics of cardiac repolarization [J].Engineering in Medicine and Biology Magazine,2002,21(1):62-65.

备注/Memo

备注/Memo:
基金项目: 浙江省科技计划重点资助项目(2004C21051).
作者简介: 陈杭(1967—),女,副教授,ch_sun@263.net.
更新日期/Last Update: 2007-05-20