[1]林欣怡,文晓巍,达庆利.随机生产中拖后需求的变质产品最优生产策略[J].东南大学学报(自然科学版),2007,37(4):731-736.[doi:10.3969/j.issn.1001-0505.2007.04.037]
 Lin Hsinyi,Wen Xiaowei,Da Qingli.Optimal production policy for deteriorating items with backlogging demand in stochastic production process[J].Journal of Southeast University (Natural Science Edition),2007,37(4):731-736.[doi:10.3969/j.issn.1001-0505.2007.04.037]
点击复制

随机生产中拖后需求的变质产品最优生产策略()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
37
期数:
2007年第4期
页码:
731-736
栏目:
经济与管理
出版日期:
2007-07-20

文章信息/Info

Title:
Optimal production policy for deteriorating items with backlogging demand in stochastic production process
作者:
林欣怡12 文晓巍3 达庆利1
1 东南大学经济管理学院, 南京 210096; 2 中州技术学院国际贸易系, 彰化 51003; 3 华南农业大学经济管理学院, 广州 510642
Author(s):
Lin Hsinyi12 Wen Xiaowei3 Da Qingli1
1 School of Economics and Management, Southeast University, Nanjing 210096, China
2 Department of International Trade, Chungchou Institute of Technology, Zhanghua 51003, China
3 College of Economics and Management,
关键词:
变质商品 随机生产 部分短缺量拖后 最优生产-库存策略
Keywords:
deteriorating items stochastic production partial backlogging optimal production-inventory policy
分类号:
F252
DOI:
10.3969/j.issn.1001-0505.2007.04.037
摘要:
针对部分短缺量拖后的变质产品,建立随机生产状态下的生产-库存模型.所谓随机生产状态,是指生产过程会随机地从一种可控状态向另一种不可控状态转移,当生产处于不可控状态时,会生产出一定比例的次品.其中,生产状态的转移服从均匀分布.通过生产-库存模型得到了随机生产状态下总成本函数,分析得到,该总成本函数是一个关于生产次数的凹函数,并由此提出了最优生产次数算法.最后给出了算例.算例结果表明,最优生产次数算法能够有效地将一个4n+1维的最优问题转化为一个一维问题,为变质商品的生产-库存决策提供了简便有效的方法.
Abstract:
A production-inventory model in a stochastic production process is established for deteriorating items with partial backlogging demand. It is assumed that the process is subject to a random imperfection from an in-control state to an out-of-control state with an arbitrary distribution and, thus, produces some proportion of imperfect items. At the same time, an elapsed time to the out-of-control state is uniformly distributed. Through the production-inventory model, the total cost function which is concave in a stochastic production process is obtained, and a production number algorithm which determines an optimal production number is derived. Finally, a numerical example is given. The results indicate that the optimal algorithm can effectively transform a 4n+1 dimension optimal problem into a one dimension optimal problem, and it can also present a simple and effective method for making production-inventory policy of deteriorating items.

参考文献/References:

[1] Silver E A,Peterson R. Decision system for inventory management and production planning [M].New York:Wiley,1985.
[2] Khouja M.The economic production lot size model under volume flexibility[J]. Journal of Computer and Operations Research,1995,22(5):515-523.
[3] Khouja M,Meherz A.Economic production lot size model with variable production rate and imperfect quality[J].Journal of the Operational Research Society,1995,45(5):1405-1417.
[4] Rosenblatt M J,Lee H L.Economic production cycles with imperfect production process[J].IIE Transactions,1986,18(1):137-144.
[5] Kim C H,Hong Y.An optimal production run length in deteriorating production process[J]. International Journal Production Economics,1999,58(2):183-189.
[6] Chang C T.An EOQ model with deteriorating items under inflation when supplier credits linked to order quantity [J].Int J Production Economics, 2004,88(3):307-316.
[7] Chang C T,Ouyang L Y,Teng J T.An EOQ model for deteriorating items under supplier credits linked to ordering quantity[J]. Applied Mathematical Modeling,2003,27(12):983-996.
[8] Papachristos S,Skouri K.An inventory model with deteriorating items,quantity discount,pricing and time-dependent partial backlogging[J].Int J Production Economics,2003,83(3):247-256.
[9] Papachristos S,Skouri K.An optimal replenishment policy for deteriorating items with time-varying demand and partial-exponential-type-backlogging[J].Operations Research Letters, 2000,27(4):175-184.
[10] Skouri K,Papachristos S.A continuous review inventory model,with deteriorating items,time-varying demand,linear replenishment cost,partially time-varying backlogging[J].Applied Mathematical Modeling,2002,26(5):603-617.
[11] Ghare P M,Schrader G P.A model for an exponentially decaying inventory[J]. Journal of Industrial Engineering,1963,14(5):238-243.
[12] Covert R P,Philip G C.An EOQ model for items with Weibull distribution deterioration[J]. IIE Transactions,1973,5(2):323-326.
[13] 余玉刚,梁墚,王晨,等.一种最终产品变质的供应商管理库存集成模型[J].中国管理科学,2004,12(2):32-37.
  Yu Yugang,Liang Liang,Wang Chen,et al.An integrated vendor-managed-inventory model for deteriorating item[J]. Chinese Journal of Management Science,2004,12(2):32-37.(in Chinese)
[14] 文晓巍,达庆利.供应链中时变需求的多品种订购策略研究[J].东南大学学报:自然科学版,2005,35(6):963-966.
  Wen Xiaowei,Da Qingli.Ordering policy of multi-deteriorating items with time-varying demand in supply chain[J].Journal of Southeast University:Natural Science Edition,2005,35(6):963-966.(in Chinese)
[15] Teng J T,Chang H J,Dye C Y.An optimal replenishment policy for deteriorating items with time-varying demand and partial backlogging[J].Operations Research Letters,2002,30(6):387-393.
[16] Teng J T,Chern M S,Yang Y J.An optimal recursive method for various inventory replenishment models with increasing demand and shortages[J]. Naval Research Logistics,1997,24(3):791-806.
[17] Friedman M F.Inventory lot-size models with general time-dependent demand and carrying cost function[J].INFOR, 1982,20(2):157-167.

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金资助项目(70472033).
作者简介: 林欣怡(1970—),女,博士生,讲师; 达庆利(联系人),男,教授,博士生导师,dqlseunj@126.com.
更新日期/Last Update: 2007-07-20