[1]安国成,高建坡,陈向东,等.一种抑制背景干扰的粒子滤波人脸跟踪算法[J].东南大学学报(自然科学版),2007,37(5):771-775.[doi:10.3969/j.issn.1001-0505.2007.05.007]
 An Guocheng,Gao Jianpo,Chen Xiangdong,et al.Tracking algorithm based on particle filter with restrained background disturbance[J].Journal of Southeast University (Natural Science Edition),2007,37(5):771-775.[doi:10.3969/j.issn.1001-0505.2007.05.007]
点击复制

一种抑制背景干扰的粒子滤波人脸跟踪算法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
37
期数:
2007年第5期
页码:
771-775
栏目:
计算机科学与工程
出版日期:
2007-09-20

文章信息/Info

Title:
Tracking algorithm based on particle filter with restrained background disturbance
作者:
安国成1 高建坡1 陈向东2 吴镇扬1
1 东南大学信息科学与工程学院, 南京 210096; 2 黄淮学院信息工程系, 驻马店 463000
Author(s):
An Guocheng1 Gao Jianpo1 Chen Xiangdong2 Wu Zhenyang1
1 School of Information Science and Engineering, Southeast University, Nanjing 210096, China
2 Department of Information Engineering, Huanghuai University, Zhumadian 463000, China
关键词:
粒子滤波 人脸跟踪 背景干扰
Keywords:
particle filter face tracking background disturbance
分类号:
TP391.41
DOI:
10.3969/j.issn.1001-0505.2007.05.007
摘要:
首先从理论上推导出基于MMSE状态估计在背景干扰下的偏差,然后通过实验说明基于MAP状态估计存在的问题,在此基础上提出一种新的跟踪目标状态参数估计方法.即在视频目标跟踪过程中,按照粒子权值大小的准则,筛选适当数量具有较大权值的粒子进行目标状态估计.由于该算法利用了参考目标与候选目标相似度大的特性,所以可以有效地剔除背景以及伪目标的影响.实验结果表明,该算法具有很好的鲁棒性,并且提高了在背景干扰下目标跟踪的精度.
Abstract:
The estimation discrepancy of the minimum mean square error(MMSE)under background disturbance is theoretically proved, and the simulation experiments demonstrate that the same problem exists in the maximum a posteriori(MAP). Based on these, a novel estimation method of tracked target status is proposed, which selects some particles with large weights for estimating the tracked target state parameters. By using the high similarity of the reference model and the candidate one, the possible influence of the background or the fake target can be efficiently eliminated. Experimental results show that the new tracker has excellent robustness and high tracking accuracy under the background disturbance.

参考文献/References:

[1] Isard M,Blake A.Condensation—conditional density propagation for visual tracking[J].International Journal of Computer Vision,1998,29(1):5-28.
[2] Arulampalam M S,Maskell S,Gordon N,et al.A tutorial on particle filters for on-line nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Trans on Signal Processing,2002,50(2):174-188.
[3] Li Yuan,Ai Haizhou,Huang Chang,et al.Robust head tracking based on a multi-state particle filter[C] //IEEE International Conference on Automatic Face and Gesture Recognition.Southampton,2006:335-340.
[4] Nummiaro K,Koller-Meier E,van Gool L.Object tracking with an adaptive color-based particle filter [C] //Proc Symposium for Pattern Recognition of the DAGM.Switzerland,2003:591-599.
[5] Li Yanqiu,Shen Yi,Liu Zhiyan.Tracking a maneuvering target in clutter by a new smoothing particle filter[C] //IEEE Conference on Instrumentation and Measurement Technology.Ottawa,2005:843-848.
[6] Chang Cheng,Ansari Rashid.Real-time tracking with multiple cues by set theoretic random search [C] //IEEE Conference on Computer Vision and Pattern Recognition.San Diego,2005:932-938.
[7] McGinnity G,Irwin G W.Multiple model bootstrap filter for manoeuvring target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems,2000,36(3):1006-1012.
[8] Doucet Apnaud,Godsill Simon,Andrieu Christophe.On sequential Monte Carlo sampling methods for Bayesian filtering[J].Statistics and Computing,2000,10(3):197-208.
[9] Merwe R,Doucet A,Freitas N,et al.The unscented particle filter[C/OL] //Advances in Neural Information Proc Systems(NIPS13).(2004-03-10)[2006-12-10].http://speech.bme.ogi.edu/publications/ps/merwe00a.pdf.
[10] Xu Xinyu,Li Baoxin.Head tracking using particle filter with intensity gradient and color histogram [C] //IEEE International Conference on Multimedia and Expo.Amsterdam,2005:888-891.
[11] Subhash Mark.Manoeuvring target tracking in clutter using particle filters[J]. IEEE Transactions on Aerospace and Electronic Systems,2005,41(1):252-270.
[12] Xu Xinyu,Li Baoxin.Rao-Blackwellised particle filter for tracking with application in visual surveillance [C] //Proceedings 2nd Joint IEEE International Workshop on VS-PETS.Beijing,China,2005:17-24.

相似文献/References:

[1]章飞,周杏鹏,陈小惠.基于小波变换的粒子滤波目标跟踪算法[J].东南大学学报(自然科学版),2010,40(2):320.[doi:10.3969/j.issn.1001-0505.2010.02.020]
 Zhang Fei,Zhou Xingpeng,Chen Xiaohui.Particle filter target tracking algorithm based on wavelet transform[J].Journal of Southeast University (Natural Science Edition),2010,40(5):320.[doi:10.3969/j.issn.1001-0505.2010.02.020]

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金资助项目(60672094).
作者简介: 安国成(1979—),男,博士生; 吴镇扬(联系人),男,教授,博士生导师,zhenyang@seu.edu.cn.
更新日期/Last Update: 2007-09-20