[1]尹凌峰,黎德林,赵惠麟.基于缺陷分布变离散度空间网格的结构稳定性[J].东南大学学报(自然科学版),2007,37(6):1013-1017.[doi:10.3969/j.issn.1001-0505.2007.06.014]
 Yin Lingfeng,Li Delin,Zhao Huilin.Stability of spatial grid structure based on variable discrete degree of imperfection distribution[J].Journal of Southeast University (Natural Science Edition),2007,37(6):1013-1017.[doi:10.3969/j.issn.1001-0505.2007.06.014]
点击复制

基于缺陷分布变离散度空间网格的结构稳定性()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
37
期数:
2007年第6期
页码:
1013-1017
栏目:
土木工程
出版日期:
2007-11-20

文章信息/Info

Title:
Stability of spatial grid structure based on variable discrete degree of imperfection distribution
作者:
尹凌峰1 黎德林2 赵惠麟1
1 东南大学土木工程学院, 南京 210096; 2 南京长安建筑设计有限公司, 南京 210002
Author(s):
Yin Lingfeng1 Li Delin2 Zhao Huilin1
1 School of Civil Engineering, Southeast University, Nanjing 210096, China
2 Nanjing Changan Architectural Design Co., Ltd., Nanjing 210002, China
关键词:
离散度 初始几何缺陷 正态分布 空间网格结构 临界荷载
Keywords:
discrete degree initial geometric imperfection normal distribution spatial grid structure critical load
分类号:
TU312.1
DOI:
10.3969/j.issn.1001-0505.2007.06.014
摘要:
定义节点位置偏差离散度为偏差样本均方差与偏差幅值平均值之比,用以反映缺陷的离散程度.通过关于偏差离散度的参数分析方法,研究节点位置缺陷变离散度对空间网格结构临界荷载的影响规律.采用空间桁架结构作为试验对象,根据结点坐标偏差实测数据,获得更贴近实际模型的统计参数和离散程度,用改进随机缺陷法计算试验结构的临界荷载并与试验结果比较.参数分析和试验验证表明,不同的离散度对空间各网格结构的临界荷载影响较大,改进随机缺陷法采用“2σ原则”基本符合工程实际,但掌握实际结构初始缺陷的离散程度,能够进一步提高结构临界荷载的评估精度.
Abstract:
Discrete degree of node position deviation is defined as the ratio of average variance of deviation samples to mean value of deviation amplitude. It is used to reflect discrete degree of imperfection. The effect of discrete degree of node location imperfection on the critical load of spatial grid structure was studied through the parameter analysis of deviation discrete degree. According to the actually measured data of nodal coordinates deviation of the space truss structure which is introduced as experimental object, statistic parameter and discrete degree can be acquired, which is closer to the actual model. Critical load of experimental structure is calculated with the improved random imperfection. The analysis of the load is compared with the experiment result. Parameter analysis and experiment verification prove that different discrete degree have great effect on critical load of spatial grid structure. Improved random imperfection method by “2σ principle” basically matches actual construction, however learning the discrete degree of initial geometric imperfection of actual construction can further increase the accuracy of valuation of structural critical load.

参考文献/References:

[1] 沈世钊,陈昕.网壳结构稳定性[M].北京:科学出版社,1999.
[2] 唐敢.板片空间结构缺陷稳定分析及试验研究[D].南京:东南大学土木工程学院,2005.
[3] 黎德琳.基于实测缺陷的网壳结构稳定性分析及相关问题研究[D].南京:东南大学土木工程学院,2006
[4] Ye Jianqiao.Large deflection of imperfect plates by iterative BE-FE method [J]. Journal of Engineering Mechanics,1994,120(3):431-444.
[5] Cederbaum G,Arbocz J.On the reliability of imperfection-sensitive long isotropic cylindrical shells [J].Structural Safety,1996,18(1):1-9.
[6] Schenk C A,Schueller G L.Buckling analysis of cylindrical shells with random geometric imperfections [J]. International Journal of Non-Linear Mechanics,2003,38(7):1119-1132.
[7] Oyesanya M O.Influence of extra terms on asymptotic analysis of imperfection sensitivity of toroidal shell segment with random imperfection [J].Mechanics Research Communications,2005,32(4):444-453.
[8] Papadopoulos V,Iglesis P.The effect of non-uniformity of axial loading on the buckling behaviour of shells with random imperfections [J]. International Journal of Solids and Structures,2007,44(18/19):6299-6317
[9] 唐敢,尹凌峰,马军,等.单层网壳结构稳定性分析的改进随机缺陷法[J].空间结构,2004,10(4):44-47
  Tang Gan,Yin Lingfeng,Ma Jun,et al.Advanced stochastic imperfection method for stability analysis of single layer lattice domes[J]. Spatial Structures,2004,10(4):44-47.(in Chinese)
[10] Yin L F,Guo X M,Zhao C Q,et al.Study of the key issues on the interaction between elements of a sheet-space structure [C] //Space Structures 5.London,2002:1313-1320.
[11] Zhao H L,Ma J,Zhao C Q,et al.Sheet space structure system:structural principles and analysis method[J].Int J Space Structures,1999,14(4):269-279.
[12] 小飒工作室.最新经典ANSYS及Workbench教程[M].北京:电子工业出版社,2004.

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金资助项目(10672039)、教育部科学技术研究重点资助项目(105083).
作者简介: 尹凌峰(1974—),男,博士,副教授,eking@seu.edu.cn.
更新日期/Last Update: 2007-11-20