[1]刘大峰,廖文和,戴宁,等.散乱点云去噪算法的研究与实现[J].东南大学学报(自然科学版),2007,37(6):1108-1112.[doi:10.3969/j.issn.1001-0505.2007.06.033]
 Liu Dafeng,Liao Wenhe,Dai Ning,et al.Research and implementation for denoising noisy scattered point data[J].Journal of Southeast University (Natural Science Edition),2007,37(6):1108-1112.[doi:10.3969/j.issn.1001-0505.2007.06.033]
点击复制

散乱点云去噪算法的研究与实现()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
37
期数:
2007年第6期
页码:
1108-1112
栏目:
计算机科学与工程
出版日期:
2007-11-20

文章信息/Info

Title:
Research and implementation for denoising noisy scattered point data
作者:
刘大峰 廖文和 戴宁 程筱胜
南京航空航天大学机电学院, 南京 210016
Author(s):
Liu Dafeng Liao Wenhe Dai Ning Cheng Xiaosheng
College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
关键词:
均值漂移 聚类 核密度估计 似然函数
Keywords:
mean-shift clustering kernel density estimation likelihood function
分类号:
TP391.72;R783.3
DOI:
10.3969/j.issn.1001-0505.2007.06.033
摘要:
提出了一种快速去除散乱点云数据表面噪声和离群点的鲁棒滤波算法.应用核密度估计聚类方法,通过Mean-Shift迭代过程将每一个采样点“漂移”到核密度估计函数的局部最大值点,该最大值点确定了点云数据的聚类中心并能准确逼近原始曲面,使点云曲面收敛为一个稳定的三维数字模型.算法中的似然估计函数充分考虑了散乱点的法矢方向,因此不仅可以去除不同幅度的噪点,还可以用简单的阈值条件很容易地检测出离群点的聚类,从而实现了点云数据的高效快速光顺去噪.
Abstract:
A method for robust filtering of a noisy set of points sampled from a smooth surface is presented. A kernel density estimation technique is used for point clustering in the presented method. Each sample point is shifted to the local maximum of the kernel function by a mean-shift based clustering procedure. The clustering center of point cloud is confirmed through the remaining set of maximum likelihood points, and the point-based surface is also approximated accurately by the same way, so the point-set surface can be converged to a stable 3D digital model. The normal directions estimated at the scattered points are concerned in the likelihood function, so noise with different amplitudes can be suppressed during the filtering procedure. Outliers can be easily detected and automatically removed by a simple threshold in the algorithm, so robust filtering of noisy scattered point cloud data is implemented.

参考文献/References:

[1] Pfister H,Zwicker M,van Baar J,et al.Surfels:surface elements as rendering primitives [C] //Proceedings of the ACM SIGGRAPH Conference on Computer Graphics.New Orleans,Louisiana,2000:335-342.
[2] Rusinkiewicz S,Levoy M.QSplat:a multiresolution point rendering system for large meshes [C] //Proceedings of the ACM SIGGRAPH Conference on Computer Graphics. New Orleans,Louisiana,2000:343-352.
[3] Pauly M,Keiser R,Kobbelt L P,et al.Shape modeling with point-sampled geometry[C] //Proceedings of the ACM SIGGRAPH Conference on Computer Graphics.San Diego,USA,2003:641-650.
[4] Zwicker M,Pfister H,van Baar J,et al.Surface splatting [C] //Proceedings of the ACM SIGGRAPH Conference on Computer Graphics.New York,2001:371-378.
[5] Pauly M,Mitra N J,Guibas L J.Uncertainty and variability in point cloud surface data[C] //Eurographics Symposium on Point Based Graphics.Zurich,2004:77-84.
[6] Press W H,Teukolsky S A,Vetterling W T,et al. The art of scientific computing [M].Cambridge:Cambridge University Press,1993.
[7] Linsen L.Point cloud representation[R].Germany:Fakultät für Informatik,University of Karlsruhe,2001.
[8] Dey T K,Goswami S,Sun J.Smoothing noisy point clouds with Delaunay preprocessing and MLS[R].Columbus:The Ohio State University,2004.
[9] Lange C,Polthier K.Anisotropic smoothing of point sets [J].Special Issue of Computer Aided Geometric Design,2005,22(7):680-692.
[10] Schölkeopf B,Giesen J,Spalinger S.Kernel methods for implicit surface modeling[C] //Advances in Neural Information Processing Systems 17.Cambridge,MA:MIT Press,2005:1193-1200.
[11] Comaniciu D,Meer P.Mean shift:a robust approach toward feature space analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):603-619.
[12] Amenta N,Choi S,Kolluri R.The power crust[C] //Proceedings of the 6th ACM Symposium on Solid Modeling.New York,2001:249-260.

相似文献/References:

[1]宋爱国,陆佶人.舰船噪声目标聚类分析的演化计算方法[J].东南大学学报(自然科学版),1997,27(6):24.[doi:10.3969/j.issn.1001-0505.1997.06.005]
 Song Aiguo,Lu Jiren.Evolutionary Computation for Ship Noise Targets Clustering Analysis[J].Journal of Southeast University (Natural Science Edition),1997,27(6):24.[doi:10.3969/j.issn.1001-0505.1997.06.005]
[2]黄书强,张震,周继鹏.无线Mesh网络节点聚类属性分析[J].东南大学学报(自然科学版),2012,42(2):219.[doi:10.3969/j.issn.1001-0505.2012.02.005]
 Huang Shuqiang,Zhang Zhen,Zhou Jipeng.Clustering attribute analysis on nodes of wireless Mesh networks[J].Journal of Southeast University (Natural Science Edition),2012,42(6):219.[doi:10.3969/j.issn.1001-0505.2012.02.005]
[3]张祥,李星,温韵清,等.语义网虚拟本体构建[J].东南大学学报(自然科学版),2015,45(4):652.[doi:10.3969/j.issn.1001-0505.2015.04.007]
 Zhang Xiang,Li Xing,Wen Yunqing,et al.Building virtual ontologies in semantic web[J].Journal of Southeast University (Natural Science Edition),2015,45(6):652.[doi:10.3969/j.issn.1001-0505.2015.04.007]
[4]高岭,申元,高妮,等.基于文本挖掘的漏洞信息聚类分析[J].东南大学学报(自然科学版),2015,45(5):845.[doi:10.3969/j.issn.1001-0505.2015.05.006]
 Gao Ling,Shen Yuan,Gao Ni,et al.Clustering analysis of vulnerability information based on text mining[J].Journal of Southeast University (Natural Science Edition),2015,45(6):845.[doi:10.3969/j.issn.1001-0505.2015.05.006]
[5]张琳,张进.基于PPIN的社交网络推荐系统[J].东南大学学报(自然科学版),2017,47(3):478.[doi:10.3969/j.issn.1001-0505.2017.03.011]
 Zhang Lin,Zhang Jin.Social network recommendation system based on PPIN[J].Journal of Southeast University (Natural Science Edition),2017,47(6):478.[doi:10.3969/j.issn.1001-0505.2017.03.011]

备注/Memo

备注/Memo:
基金项目: 国家高技术研究发展计划(863计划)资助项目(2005AA420240)、江苏省科技攻关资助项目(BE2005014)、南京市医学科技发展计划资助项目(ZKX0420)、南京市科技发展计划资助项目(200504022).
作者简介: 刘大峰(1977—), 男, 博士生; 廖文和(联系人),男,博士,教授,博士生导师,njwho@nuaa.edu.cn.
更新日期/Last Update: 2007-11-20