[1]郭晓波,宋爱国,翟雁.基于变参数的远程康复训练机器人神经网络控制[J].东南大学学报(自然科学版),2008,38(1):54-57.[doi:10.3969/j.issn.1001-0505.2008.01.011]
 Guo Xiaobo,Song Aiguo,Zhai Yan.Neural network control of tele-rehabilitation robot based on variable parameter[J].Journal of Southeast University (Natural Science Edition),2008,38(1):54-57.[doi:10.3969/j.issn.1001-0505.2008.01.011]
点击复制

基于变参数的远程康复训练机器人神经网络控制()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
38
期数:
2008年第1期
页码:
54-57
栏目:
自动化
出版日期:
2008-01-20

文章信息/Info

Title:
Neural network control of tele-rehabilitation robot based on variable parameter
作者:
郭晓波1 宋爱国1 翟雁2
1 东南大学仪器科学与工程学院, 南京 210096; 2 安阳工学院机械工程系, 安阳 455000
Author(s):
Guo Xiaobo1 Song Aiguo1 Zhai Yan2
1 School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
2 Department of Mechanical Engineering, Anyang Institute of Technology, Anyang 455000,China
关键词:
远程康复 双向遥操作 BP神经网络 变参数 机器人
Keywords:
tele-rehabilitation bilateral teleoperation back propagation neural network variable parameter robot
分类号:
TP242
DOI:
10.3969/j.issn.1001-0505.2008.01.011
摘要:
为使患者的远程康复训练达到更为理想的效果,针对患者在训练时肌肉痉挛对双向遥操作系统的稳定性以及对从机械手的速度平滑性的影响,提出了一种新的基于BP神经网络变参数控制方法.通过检测患者训练时力、加速度、速度、位置等的变化,采用BP神经网络自动调整从端控制参数,从而消除了系统的不稳定性和减少了对系统平滑性的影响,并具有很强的鲁棒性.分析和仿真试验结果表明,此方法与传统的控制方法相比,可有效地克服患者因肌肉痉挛带来的干扰并具有较好的稳定性和平滑性.
Abstract:
During the tele-rehabilitation traing, the rehabilitant’s muscle spasm may result in the bilateral telerobot system instability and cause its slave’s speed unsmoothness, which make the rehabilitation training inefficient. In order to guarantee the stability and reduce the fluctuation of the speed, a new method based on the variable parameter with BP(back propagation)neural network was brought forward. By measuring the changes of the limb’s force, acceleration, velocity and position, BP neural network automatically adjusted the control parameter of the slave side. Not only the stability can be guaranteed, but also the slave’s speed unsmoothness can be decreased. The system has strong robustness. Analysis and simulation results show that this method is much more stable and smooth than the traditional control and can effectively restrain the interference resulting from rehabilitant’s spasm.

参考文献/References:

[1] Hagemann G,Redeckrr C,Neumann-Haefelin T,et al.Increased long-term potentiation in the surround of experimentally induced focal cortical infarction[J]. Annals of Neurology, 1998,44(2):255-258.
[2] Fasoli S E,Krebs H I,Stein J,et al.Effects of robotic therapy on motor impairment and recovery in chronic stroke[J].Archives of Physical Medicine & Rehabilitation,2003,84(4):477-482.
[3] Hoenig H,Sanford J A,Griffiths P M,et al.Development of a tele-technology protocol for in-home rehabilitation[J].Journal of Rehabilitation Research and Development,2006,43(2):287-297.
[4] 李会军,宋爱国.上肢康复训练机器人的研究进展及前景[J].机器人技术与应用,2006,19(4):32-36.
  Li Huijun,Song Aiguo.Progress and future of rehabilitation robot for upper-limb[J].Robot Technique and Application,2006,19(4):32-36.(in Chinese)
[5] 王广志.肌肉痉挛定量评估的研究进展[J].现代康复,2004,4(5):650-652.
  Wang Guangzhi.Advancing of quantitative of spasticity[J].Modern Rehabilitation,2004,4(5):650-652.(in Chinese)
[6] Niemeyer G,Slotline J J E.Stable adaptive teleoperation[J].IEEE Journal of Oceanic Engineering,1991,16(1):152-162.
[7] Lum P S,Burgar C G,Shor P C,et al.Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke[J].Archives of Physical Medicine and Rehabilitation,2002,83(7):952-959.
[8] Krebs H I,Volpe B T,Aisen M L,et al.Increasing productivity and quality of care:robot-aided neuro-rehabilitation[J].Journal of Rehabilitation Research and Development,2000,37(6):639-652.
[9] Hesse S,Schulte T G,Konrad M,et al.Robot-assirted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects[J]. Archives of Physical Medicine and Rehabilitation,2003,84(4):918-920.
[10] 徐丽娜.神经网络控制[M].北京:电子工业出版社,2003:7-198.

备注/Memo

备注/Memo:
作者简介: 郭晓波(1976—),男,博士生; 宋爱国(联系人),男,博士,教授,博士生导师,a.g.song@seu.edu.cn.
基金项目: 国家高技术研究发展计划(863 计划)资助项目(2006AA04Z246)、江苏省国际合作资助项目(BE2006046)、江苏省六大高峰人才资助项目(06-D-031).
引文格式: 郭晓波,宋爱国,翟雁.基于变参数的远程康复训练机器人神经网络控制[J].东南大学学报:自然科学版,2008,38(1):
更新日期/Last Update: 2008-01-20