[1]朱清,费树岷,李涛.带有多个离散和分布时滞的不确定系统的鲁棒自适应控制[J].东南大学学报(自然科学版),2008,38(1):175-180.[doi:10.3969/j.issn.1001-0505.2008.01.034]
 Zhu Qing,Fei Shumin,Li Tao.Robust adaptive control for uncertain systems with multiple discrete and distributed delays[J].Journal of Southeast University (Natural Science Edition),2008,38(1):175-180.[doi:10.3969/j.issn.1001-0505.2008.01.034]
点击复制

带有多个离散和分布时滞的不确定系统的鲁棒自适应控制()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
38
期数:
2008年第1期
页码:
175-180
栏目:
自动化
出版日期:
2008-01-20

文章信息/Info

Title:
Robust adaptive control for uncertain systems with multiple discrete and distributed delays
作者:
朱清 费树岷 李涛
东南大学自动化学院, 南京 210096; 东南大学复杂工程系统测量与控制教育部重点实验室, 南京 210096
Author(s):
Zhu Qing Fei Shumin Li Tao
School of Automation, Southeast University, Nanjing 210096, China
Key Laboratory of Measurement and Control of Complex Systems of Engineering of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
时滞系统 多时滞 鲁棒控制 自适应控制 神经网络 全局指数稳定性
Keywords:
time-delay systems multiple delays Robust control adaptive control neural networks global exponential stability
分类号:
TP273
DOI:
10.3969/j.issn.1001-0505.2008.01.034
摘要:
对于带有多个离散和分布时滞且有外部干扰的不确定线性系统提出一类鲁棒自适应控制方案.系统的不确定性是范数有界的未知连续函数,外部干扰是扇形有界的.分2步证明其结论:首先用线性矩阵不等式方法说明状态反馈控制可以保证系统的确定部分的稳定性; 其次由于系统的不确定部分的上界未知,用自适应的方法来估计上界的值; 利用径向基函数神经网络来估计关于状态的未知连续函数; 最终证明了在结合状态反馈和自适应神经网络控制的复合控制律作用下闭环系统是渐近稳定的.然后,在第一步基础上,要求系统满足2个不等式条件,设计相应的控制律参数,用Lyapunov-Krasovskii泛函方法证明了闭环系统是指数稳定的.
Abstract:
A robust adaptive control scheme is proposed for the stabilization of uncertain linear systems with multiple discrete and distributed delays and bounded perturbations. The uncertainty is assumed to be unknown continuous function with norm-bounded restriction. The perturbation is sector-bounded. The proof is presented in two steps. Step 1, linear matrix inequality(LMI)method is utilized to demonstrate that the certain part of the system can be stabilized by state feedback control. Because the upper boundary of the uncertainty of the system is unknown, the adaptive method is employed to estimate the upper boundary. The unkown continuous function about state is estimated by radius basis function neural networks. Together with the controller which is composed of state feedback, neural networks and adaptive control, the close-loop system is proved to be asymptotically stable. Step 2, on the base of step 1, two inequality conditions about the system are required. The parameter of control law is correspondingly designed. By Lyapunov-Krasovskii functional method, the exponential stability of the close-loop system is proved.

参考文献/References:

[1] Xu Shengyuan,Lam James,Zou Yun.New results on delay-dependent robust Hcontrol for systems with time-varying delays [J]. Automatica,2006,42(2):343-348.
[2] Wu Hansheng.Adaptive stabilizing state feedback controllers of uncertain dynamical systems with multiple time delays [J].IEEE Trans Automat Contr,2000,45(9):1697-1701.
[3] Han Qinglong.Absolute stability of time-delay systems with sector-bounded nonlinearity [J]. Automatica,2005,41(12):2171-2176.
[4] Yue Dong,Han Qinglong.Delayed feedback control of uncertain systems with time-varying input delay [J]. Automatica,2005,41(2):233-240.
[5] Xu Shengyuan,Lam James,Daniel W,et al.Improved global robust asymptotic stability criteria for delayed cellular neural networks [J].IEEE Trans Sys,Man & Cyber-Part B,2005,35(6):1317-1321.
[6] Zheng Feng,Wang Qingguo,Lee Tongheng.Adaptive robust control of uncertain time delay systems [J]. Automatica,2005,41(7):1375-1383.
[7] Li Tao,Guo Lei,Zhang Yuming.Delay-range-dependent robust stability and stabilization for uncertain systems with time-varying delay [EB/OL].(2007-09-13)[2007-10-6].http://www3.interscience.wiley.com/cgi-bin/fulltext/116329924/PDFSTART.
[8] Li Tao,Guo Lei,Sun Chanyin.Robust stability for neural networks with time-varying delays and linear fractional uncertainties [J].Neurocomputing,2007,71(1/2/3):421-427.
[9] Yang Haifeng,Chu Tianguang,Zhang Cishen.Exponential stability of neural networks with virable delay via LMI approach [J]. Chaos,Solitons & Fractals,2006,27(1):133-139.
[10] Yue Dong.Robust stabilization of uncertain systems with unknown input delay [J]. Automatica,2004,40(2):331-336.
[11] Halanay A. Differential equations:stability,oscillations,time Lags [M].New York:Academic Press,1966:100-105.
[12] Wang Z,Liu Y,Liu X.On global asymptotic stability of neural networks with discrete and distributed delays [J]. Phys Lett A,2005,345(4/5/6):299-308.

相似文献/References:

[1]姜偕富,费树岷,冯纯伯.线性时滞系统依赖时滞的反馈控制[J].东南大学学报(自然科学版),2000,30(2):62.[doi:10.3969/j.issn.1001-0505.2000.02.013]
 Jiang Xiefu,Fei Shumin,Feng Chunbo.Delay-Dependent Feedback Control for Linear Time-Delay System[J].Journal of Southeast University (Natural Science Edition),2000,30(1):62.[doi:10.3969/j.issn.1001-0505.2000.02.013]
[2]姜偕富,费树岷,冯纯伯.线性时滞系统H∞动态输出反馈控制[J].东南大学学报(自然科学版),1999,29(5):70.[doi:10.3969/j.issn.1001-0505.1999.05.014]
 Jiang Xiefu,Fei Shumin,Feng Chunbo.H∞ Control Via Dynamic Feedback for Linear Time-Delay Systems[J].Journal of Southeast University (Natural Science Edition),1999,29(1):70.[doi:10.3969/j.issn.1001-0505.1999.05.014]
[3]何率天,达飞鹏.模糊时滞系统的状态反馈控制器设计与稳定性分析[J].东南大学学报(自然科学版),2006,36(4):657.[doi:10.3969/j.issn.1001-0505.2006.04.035]
 He Shuaitian,Da Feipeng.Design and stability analysis of state feedback controller for fuzzy time-delay systems[J].Journal of Southeast University (Natural Science Edition),2006,36(1):657.[doi:10.3969/j.issn.1001-0505.2006.04.035]
[4]姜偕富,费树岷,冯纯伯.线性时滞系统带记忆静态输出反馈H∞控制[J].东南大学学报(自然科学版),2001,31(1):20.[doi:10.3969/j.issn.1001-0505.2001.01.005]
 Jiang Xiefu,Fei Shumin,Feng Chunbo.H∞ Static Output-Feedback Control for Linear Time-Delay System with Memory[J].Journal of Southeast University (Natural Science Edition),2001,31(1):20.[doi:10.3969/j.issn.1001-0505.2001.01.005]

备注/Memo

备注/Memo:
作者简介: 朱清(1972—), 男, 博士生; 费树岷(联系人), 男, 博士, 教授, 博士生导师, smfei@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(60574006).
引文格式: 朱清,费树岷,李涛.带有多个离散和分布时滞的不确定系统的鲁棒自适应控制[J].东南大学学报:自然科学版,2008,38(1):175-180.
更新日期/Last Update: 2008-01-20