[1]李涛,费树岷,路红.具有变时滞Cohen-Grossberg神经网络全局稳定性分析[J].东南大学学报(自然科学版),2008,38(1):181-186.[doi:10.3969/j.issn.1001-0505.2008.01.035]
 Li Tao,Fei Shumin,Lu Hong.Analysis on global stability of Cohen-Grossberg neural networks with time-varying delay[J].Journal of Southeast University (Natural Science Edition),2008,38(1):181-186.[doi:10.3969/j.issn.1001-0505.2008.01.035]
点击复制

具有变时滞Cohen-Grossberg神经网络全局稳定性分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
38
期数:
2008年第1期
页码:
181-186
栏目:
自动化
出版日期:
2008-01-20

文章信息/Info

Title:
Analysis on global stability of Cohen-Grossberg neural networks with time-varying delay
作者:
李涛 费树岷 路红
东南大学自动化学院,南京 210096
Author(s):
Li Tao Fei Shumin Lu Hong
School of Automation, Southeast University, Nanjing 210096, China
关键词:
渐近稳定性 描述系统 Cohen-Grossberg神经网络 变时滞 线性矩阵不等式
Keywords:
asymptotical stability descriptor system Cohen-Grossberg neural networks time-varying delay linear matrix inequality
分类号:
TP18
DOI:
10.3969/j.issn.1001-0505.2008.01.035
摘要:
通过选取一个新颖的Lyapunov-Krasovskii泛函和引入与系统等价的描述系统, 利用一些自由权矩阵和不等式适当的放大,在Lyapunov-Krasovskii泛函方法的基础上,讨论了具有变时滞Cohen-Grossberg神经网络的全局稳定性问题并得到了2个时滞相关的渐近稳定性准则. 所得到的稳定性准则以线性矩阵不等式(LMI)的形式给出, 能够用Matlab工具箱LMI很容易地进行检验. 且变时滞导函数只要有上界而不必小于1和系统激励函数的限制条件较现有文献中的条件要弱, 这拓展了现有的结论. 在最后的数值例子中,计算结果说明所得结论较以往的方法有很大改善.
Abstract:
Through choosing a novel Lyapunov-Krasovskii functional, introducing the equivalent descriptor form of addressed systems, employing some free-weighting matrices and appropriate enlargement of inequalities, the global stability of Cohen-Grossberg neural networks with time-varying delays is investigated and two delay-dependent stability criteria are obtained based on the Lyapunov-Krasovskii functional method. The criteria are presented in terms of LMIs, which can be easily checked by the LMI(linear matrix inequality)in the Matlab Toolbox. Additionally, the derivative of the time-varying delay only request an upper limitation but not necessarily less than 1 and the activation functions are of more general descriptions, which generalize those existing results. In the numerical example, the comparing results can illustrate that the obtained method is an improvement over the earlier ones.

参考文献/References:

[1] Cohen M A,Grossberg S.Absolute stability of global pattern formation and parallel memory storage by competitive neural networks[J].IEEE Transactions on Systems,Man and Cybernetics,1983,13(1):815-826.
[2] Ji C,Zhang H G,Guan H X,et al.Analysis for Cohen-Grossberg neural networks with multiple delays[J].Journal of Control Theory and Applications,2006,4(2):392-396.
[3] Chen Z,Zhao D H,Ruan J.Dynamic analysis of high-order Cohen-Grossberg neural networks with time delay[J]. Chaos,Solitons and Fractals,2007,32(4):1538-1546.
[4] Zhao H Y,Ding N.Dynamic analysis of stochastic Cohen-Grossberg neural networks with time delays[J].Applied Mathematics and Computation, 2006,183(1):464-470.
[5] Xiong W L,Xu B G.Some criteria for robust stability of Cohen-Grossberg neural networks with delays[EB/OL].(2006-12)[2007-01].http://www.sciencedirect.com.
[6] Wu W,Cui B T,Lou X Y.Some criteria for asymptotic stability of Cohen-Grossberg neural networks with time-varying delays[J].Neurocomputing,2007,70(4/5/6):1085-1088.
[7] Jiang M H,Shen Y,Liao X X.Boundedness and global exponential stability for generalized Cohen-Grossberg neural networks with variable delay[J]. Applied Mathematics and Computation,2006,172(1):379-393.
[8] Chen W H,Zheng W X.Stability analysis for Cohen-Grossberg neural networks with time-varying delays[C] //IEEE International Symposium on Circuits and Systems.Kos,Greece,2006:3630-3633.
[9] Chen W H,Lu X M.Delay-dependent exponential stability of neural networks with variable delay:an LMI approach[J].IEEE Transactions on Circuits and Systems-Ⅱ:Express Briefs,2006,53(3):837-842.
[10] Zhang X M,Wu M,She J H.Delay-dependent stabilization of linear systems with time-varying state and input delays[J]. Automatica,2005,41(8):1405-1412.
[11] Xu S Y,James Lam.Novel global stability criteria for interval neural networks with multiple time-varying delays[J]. Physics Letters A,2005,342(4):322-330.
[12] Liu R Y,Wang Z D,Liu X.Design of exponential state estimators for neural networks with mixed time delays[J]. Physics Letters A,2007,36(5):401-412.

相似文献/References:

[1]赵贤林,费树岷,林金星.基于数据丢包的离散奇异脉冲系统量化控制器设计[J].东南大学学报(自然科学版),2011,41(3):549.[doi:10.3969/j.issn.1001-0505.2011.03.023]
 Zhao Xianlin,Fei Shumin,Lin Jinxing.Quantized controller design for discrete singular impulsive systems based on data dropouts[J].Journal of Southeast University (Natural Science Edition),2011,41(1):549.[doi:10.3969/j.issn.1001-0505.2011.03.023]

备注/Memo

备注/Memo:
作者简介: 李涛(1979—),男,博士生; 费树岷(联系人),男,博士,教授,博士生导师,smfei@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(60574006).
引文格式: 李涛,费树岷,路红.具有变时滞Cohen-Grossberg神经网络全局稳定性分析[J].东南大学学报:自然科学版,2008,38(1):181-186.
更新日期/Last Update: 2008-01-20