[1]陈功,周来水,安鲁陵,等.基于网格边的复杂曲面优化展开[J].东南大学学报(自然科学版),2008,38(2):340-345.[doi:10.3969/j.issn.1001-0505.2008.02.031]
 Chen Gong,Zhou Laishui,An Luling,et al.Optimal flattening of complex surfaces based on mesh edges[J].Journal of Southeast University (Natural Science Edition),2008,38(2):340-345.[doi:10.3969/j.issn.1001-0505.2008.02.031]
点击复制

基于网格边的复杂曲面优化展开()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
38
期数:
2008年第2期
页码:
340-345
栏目:
计算机科学与工程
出版日期:
2008-03-20

文章信息/Info

Title:
Optimal flattening of complex surfaces based on mesh edges
作者:
陈功12 周来水1 安鲁陵1 詹雯1
1 南京航空航天大学CAD/CAM工程研究中心, 南京 210016; 2 中国矿业大学艺术与设计学院, 徐州 221008
Author(s):
Chen Gong12 Zhou Laishui1 An Luling1 Zhan Wen1
1 Research Center of CAD/CAM Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2 School of Art and Design, China University of Mining and Technology, Xuzhou 221008, China
关键词:
优化展开 网格边 牛顿法 矩阵分块 “涟漪式”展开
Keywords:
optimal flattening mesh edges Newton’s method matrix blocking ripple-style flattening
分类号:
TP391
DOI:
10.3969/j.issn.1001-0505.2008.02.031
摘要:
提出了一种基于网格边的复杂曲面优化展开的新方法.该方法以曲面三角网格中各网格边的长度为优化变量,以展开前后网格边的长度误差为优化目标,以网格中各内部点均可展为约束条件,并用牛顿法和矩阵分块等方法对该优化问题进行求解,构造出与原始曲面边长误差最小的可展曲面.最后对构造出的可展曲面用基于中心三角片的“涟漪式”展开方法进行展开,从而实现复杂曲面的优化展开.数值实验结果表明,该方法具有稳定性好、收敛速度快、展开精度高、展开操作简单等优点,可以应用于各种复杂曲面的优化展开.
Abstract:
A novel optimal method based on mesh edges is presented for flattening complex surfaces. In the optimal flattening model, the edge-lengths of the original surface’s mesh are selected as optimization variables, and the error of the edge-lengths between the original mesh and the flattened mesh is selected as objective function, and each internal point of the mesh being developable is selected as optimization constrain. By Newton’s method and matrix blocking technologies, the optimization problem can be resolved and a developable surface, which has the minimum error of the edge-lengths, can be constructed. Finally, a ripple-style flattening method is used to flatten the developable surface, and the flattening result of the original surface is obtained. Numerical experimental results show that the method can flatten all kinds of complex surfaces stably, quickly and accurately, and the flattening operation can be finished more simply.

参考文献/References:

[1] Parida L,Mudur S P.Constraint-satisfying planner flattening of complex surface [J]. CAD,1993,25(4):225-232.
[2] 席平.三维曲面的几何展开[J].计算机学报,1997,20(4):315-322.
  Xi Ping.Geometric approach of 3-D surface development [J].Chinese J Computers,1997,20(4):315-322.(in Chinese)
[3] Shimada T,Tada Y.Approximate transformation of an arbitrary curved surfaces into a plane using dynamic programming [J].CAD,1991,23(2):153-159.
[4] Shimada T,Tada Y.Flattening of curved surface using finite element method in computer-aided optimum design of structure [M].London:Springer Verlag,1989.
[5] 王弘,王昌凌.基于能量模型的曲面展开通用算法[J].计算机辅助设计与图形学学报,2001,13(6):556-560.
  Wang Hong,Wang Changlin.A general surface development algorithm based on energy model [J]. Journal of Computer-Aided Design & Computer Graphics,2001,13(6):556-560.(in Chinese)
[6] Fan J,Wang Q F,Chen S F,et al.A spring-mass model-based approach for warping cloth patterns on 3-D objects [J]. The Journal of Visualization and Computer Animation,1998,9(4):215-227.
[7] Li J T,Zhang D L,Lu G D,et al.Flattening triangulated surfaces using a mass-spring model [J]. International Journal of Advanced Manufacturing Technology,2005,25(1/2):108-117.
[8] 毛国栋,孙炳楠,徐浩祥.基于弹簧-质点系统的薄膜结构曲面展开算法[J].浙江大学学报:工学版,2005,39(8),1238-1242.
  Mao Guodong,Sun Bingnan,Xu Haoxiang.Membrane surface flattening algorithm based on spring-mass system[J].Journal of Zhejiang University:Engineering Science,2005,39(8):1238-1242.(in Chinese)
[9] Wang C L,Tang K.Achieving develop ability of a polygonal surface by minimum deformation:a study of global and local optimization approaches [J]. The Visual Computer:International Journal of Computer Graphics,2004,20(11):521-539.
[10] Sheffer A,Sturler E.Parameterization of faceted surfaces for meshing using angle-based flattening [J].Engineering with Computers,2001,17(3):326-337.
[11] Baumgart B G.STAN-CS-320 Winged-edge polyhedron representation[R].Palo Alto,California:Computer Science Department,Stanford University,1972:1-46.
[12] 陈宝林.最优化理论与算法[M].北京:清华大学出版社,1989.
[13] Li S X.An overview of superLU:algorithms,implementation,and user interface [J].ACM Trans Math Software,2005,31(3):302-325.
[14] McCartney J,Hinds B K,Seow B L.The flattening of triangulated surfaces incorporating darts and gussets [J].Computer-Aided Design,1999,31(1):249-260.
[15] Wang C L,Smith S F,Yuen M F.Surface flattening based on energy model [J]. Computer-Aided Design,2002,34(11):823-833.

备注/Memo

备注/Memo:
作者简介: 陈功(1972—),男,博士生,副教授; 周来水(联系人),男,博士,教授,博士生导师,ZLSME@nuaa.edu.cn.
基金项目: 高等学校优秀青年教师科研奖励计划资助项目(教人司[2002]123号)、中国矿业大学青年科技基金资助项目(0V061039).
引文格式: 陈功,周来水,安鲁陵,等.基于网格边的复杂曲面优化展开[J].东南大学学报:自然科学版,2008,38(2):340-345.
更新日期/Last Update: 2008-03-20