[1]郝勇生,于向军,赵刚,等.基于改进粒子群算法的球磨机运行优化[J].东南大学学报(自然科学版),2008,38(3):419-423.[doi:10.3969/j.issn.1001-0505.2008.03.011]
 Hao Yongsheng,Yu Xiangjun,Zhao Gang,et al.Optimization for ball mill operation based on improved particle swarm optimization algorithm[J].Journal of Southeast University (Natural Science Edition),2008,38(3):419-423.[doi:10.3969/j.issn.1001-0505.2008.03.011]
点击复制

基于改进粒子群算法的球磨机运行优化()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
38
期数:
2008年第3期
页码:
419-423
栏目:
能源与动力工程
出版日期:
2008-05-20

文章信息/Info

Title:
Optimization for ball mill operation based on improved particle swarm optimization algorithm
作者:
郝勇生12 于向军1 赵刚1 吕震中1
1 东南大学能源与环境学院, 南京 210096; 2 南京南瑞继保电气有限公司, 南京 211106
Author(s):
Hao Yongsheng12 Yu Xiangjun1 Zhao Gang1 Lü Zhenzhong1
1 School of Energy and Environmental, Southeast University, Nanjing 210096, China
2 Nanjing Nari-relays Electric Co.,Ltd, Nanjing 211106, China
关键词:
球磨机 支持向量机 粒子群 混沌 运行优化
Keywords:
ball mill support vector regression particle swarm chaos theory optimization
分类号:
TK39
DOI:
10.3969/j.issn.1001-0505.2008.03.011
摘要:
为了降低制粉系统球磨机的能耗率,对球磨机进行了运行优化的研究.在运行优化过程中,为了获得运行优化的目标模型,运用支持向量回归机对制粉出力进行了软测量建模,实现了制粉出力的在线软计算,得到了制粉单耗的计算模型.在此基础上,将混沌遍历的思想引入粒子群优化算法,提出了一种新的混沌遍历粒子群算法,该改进粒子群算法具有较快的搜索速度及全局收敛的特点.将该改进粒子群算法用于球磨机运行目标的优化从而获得最佳运行参数值. 研究结果表明,运用所建立的运行优化目标模型及改进的优化算法可以获得球磨机的最佳运行优化参数,该研究具有重要的工程应用价值.
Abstract:
To achieve a minimal unit power consumption and maximal output of ball mill in power plant, some research about optimization of the mill running parameters was done. During the optimizing process, the soft sensor model for monitoring pulverizing-capacity of the mill on line was established based on support vector regression(SVR)algorithm as well as the consumption model for pulverizing coal. Based on this work, the chaos theory was applied to improve the PSO(particles swarm optimization)algorithm in order to cope with the problems such as low-search speed and local optimization. Finally, the advanced PSO algorithm was used to optimize these models obtained in this paper to achieve the optimizing running parameters of pulverizing process. The results indicate that the optimizing parameters can be obtained through these models and advanced PSO algorithm. This study is useful for engineering application.

参考文献/References:

[1] van den Bergh Frans,Engelbrecht A P.A cooperative approach to particle swarm optimization[J].IEEE Transactions on Evolutionary Computation,2004,8(3):225-239.
[2] Parsopoulos K E,Vrahatis M N.On the computation of all global minimizers through particle swarm optimiza-tion[J]. IEEE Transactionson Evolutionary Computation,2004,8(3):211-224.
[3] Smola A,Sholkpf B.A tutorial on support vector regression for pattern recognition [J].Data Mining and Knowledge Discovery,1998,2:121-167.
[4] Osuna E,Freund R,Girosi F.An improved training algorithm for support vector machines [C] //IEEE Workshop on Neural Networks for Signal Processing.Amelia Island,FL,1997:276-285.
[5] Osuna E,Freund R,Girosi F.Training support vector machines:an application to face detection[C] //IEEE Conference on Computer Vision and Pattern Recognition.San Juan,Puerto Rico,1997:130-136.
[6] 张韵辉.软计算在热工过程中的应用[D]:南京.东南大学能源与环境学院,2006.
[7] 苏志刚,王培红,于向军,等.中储式制粉系统制粉出力在线监测软测量建模[J].中国电机工程学报,2007,27(29):90-95.
  Su Zhigang,Wang Peihong,Yu Xiangjun,et al.Soft sensor modeling for on-line monitoring the capacity of coal pulverizing system[J].Proceeding of the CSEE,2007,27(29):90-95.(in Chinese)
[8] 卢侃.混沌动力学[M].上海:上海远东出版社,1990:200-214.
[9] 黄润生.混沌及其应用[M].武汉:武汉大学出版社,2000:112-128.
[10] 陈强.热工过程中的数据校正和多目标优化研究[D]:南京.东南大学能源与环境学院,2004.

相似文献/References:

[1]李晓东,费树岷,张涛.基于奇异值特征和支持向量机的人脸识别[J].东南大学学报(自然科学版),2008,38(6):981.[doi:10.3969/j.issn.1001-0505.2008.06.009]
 Li Xiaodong,Fei Shumin,Zhang Tao.Face recognition based on singular value feature and support vector machines[J].Journal of Southeast University (Natural Science Edition),2008,38(3):981.[doi:10.3969/j.issn.1001-0505.2008.06.009]
[2]靳一,吴乐南,冯熳,等.随机极性MCP-EBPSK传输性能[J].东南大学学报(自然科学版),2012,42(6):1031.[doi:10.3969/j.issn.1001-0505.2012.06.002]
 Jin Yi,Wu Lenan,Feng Man,et al.Transmission performance of MCP-EBPSK with random polar[J].Journal of Southeast University (Natural Science Edition),2012,42(3):1031.[doi:10.3969/j.issn.1001-0505.2012.06.002]
[3]黄鹏,贾民平,钟秉林,等.基于球磨机筒体振动的料位特征量[J].东南大学学报(自然科学版),2012,42(5):898.[doi:10.3969/j.issn.1001-0505.2012.05.019]
 Huang Peng,Jia Minping,Zhong Binglin,et al.Characteristic value of fill level based on vibration of ball mill shell[J].Journal of Southeast University (Natural Science Edition),2012,42(3):898.[doi:10.3969/j.issn.1001-0505.2012.05.019]
[4]张兵,邓卫.经济圈交通网络SVM评价方法[J].东南大学学报(自然科学版),2012,42(6):1227.[doi:10.3969/j.issn.1001-0505.2012.06.037]
 Zhang Bing,Deng Wei.SVM evaluation method of transportation network in economic circle[J].Journal of Southeast University (Natural Science Edition),2012,42(3):1227.[doi:10.3969/j.issn.1001-0505.2012.06.037]
[5]孙立,潘蕾,沈炯.基于LSSVM-GPC的流化床锅炉多变量协调控制方法[J].东南大学学报(自然科学版),2013,43(2):312.[doi:10.3969/j.issn.1001-0505.2013.02.016]
 Sun Li,Pan Lei,Shen Jiong.Multivariable coordinated control method of FBC boiler based on LSSVM-GPC[J].Journal of Southeast University (Natural Science Edition),2013,43(3):312.[doi:10.3969/j.issn.1001-0505.2013.02.016]
[6]王玉芳,严洪森.基于非线性模糊支持向量机的知识化制造模式与动态环境匹配分类方法[J].东南大学学报(自然科学版),2014,44(5):957.[doi:10.3969/j.issn.1001-0505.2014.05.015]
 Wang Yufang,Yan Hongsen,et al.Classification method of matching knowledgeable manufacturing mode with dynamic environment based on nonlinear fuzzy weight SVM[J].Journal of Southeast University (Natural Science Edition),2014,44(3):957.[doi:10.3969/j.issn.1001-0505.2014.05.015]
[7]黄杰,史啸.一种基于人体裸露皮肤形状的不良图像过滤系统[J].东南大学学报(自然科学版),2014,44(6):1111.[doi:10.3969/j.issn.1001-0505.2014.06.003]
 Huang Jie,Shi Xiao.Pornographic image filtering system based on shape of naked skin[J].Journal of Southeast University (Natural Science Edition),2014,44(3):1111.[doi:10.3969/j.issn.1001-0505.2014.06.003]
[8]杨敏,丁剑,王炜.基于ARIMA-SVM模型的快速公交停站时间组合预测方法[J].东南大学学报(自然科学版),2016,46(3):651.[doi:10.3969/j.issn.1001-0505.2016.03.033]
 Yang Min,Ding Jian,Wang Wei.Hybrid dwell time prediction method for bus rapid transit based on ARIMA-SVM model[J].Journal of Southeast University (Natural Science Edition),2016,46(3):651.[doi:10.3969/j.issn.1001-0505.2016.03.033]
[9]郭圣文,池敏越,岑桂英,等.MR影像体素形态学的阿尔茨海默病自动分类方法[J].东南大学学报(自然科学版),2015,45(2):260.[doi:10.3969/j.issn.1001-0505.2015.02.012]
 Guo Shengwen,Chi Minyue,Cen Guiyin,et al.Automatic classification method of Alzheimer’s disease by voxel-based morphometry on MR images[J].Journal of Southeast University (Natural Science Edition),2015,45(3):260.[doi:10.3969/j.issn.1001-0505.2015.02.012]
[10]朱周,路小波,卫朋,等.基于超像素和支持向量机的车辆阴影检测算法[J].东南大学学报(自然科学版),2015,45(3):443.[doi:10.3969/j.issn.1001-0505.2015.03.006]
 Zhu Zhou,Lu Xiaobo,Wei Peng,et al.Vehicle shadow detection algorithm based on superpixel and SVM[J].Journal of Southeast University (Natural Science Edition),2015,45(3):443.[doi:10.3969/j.issn.1001-0505.2015.03.006]

备注/Memo

备注/Memo:
作者简介: 郝勇生(1978—),男,博士生; 吕震中(联系人),男,教授,博士生导师,lzzseu@126.com.
引文格式: 郝勇生,于向军,赵刚.基于改进粒子群算法的球磨机运行优化[J].东南大学学报:自然科学版,2008,38(3):419-423.
更新日期/Last Update: 2008-05-20