[1]何钢,廖文和,刘浩,等.Catmull-Clark细分曲面的变距离偏置[J].东南大学学报(自然科学版),2008,38(3):424-428.[doi:10.3969/j.issn.1001-0505.2008.03.012] 　He Gang,Liao Wenhe,Liu Hao,et al.Variable offset of Catmull-Clark subdivision surface[J].Journal of Southeast University (Natural Science Edition),2008,38(3):424-428.[doi:10.3969/j.issn.1001-0505.2008.03.012] 点击复制 Catmull-Clark细分曲面的变距离偏置() 分享到： var jiathis_config = { data_track_clickback: true };

38

2008年第3期

424-428

2008-05-20

文章信息/Info

Title:
Variable offset of Catmull-Clark subdivision surface

Author(s):
College of Mechanical and Electric Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Keywords:

TP391.7
DOI:
10.3969/j.issn.1001-0505.2008.03.012

Abstract:
An algorithm is presented to implement variable offset of Catmull-Clark subdivision surfaces. After assigning offset distances and offset weights to control vertices, offset distances of new vertices generated during subdivision are determined by the weighted interpolatory subdivision method. Then offsetting corresponding distances at the normal of control vertex’s limit points, control meshes of offset surfaces are generated using iterative method, which assures exact offsetting at control vertex’s limit points. Variable offset takes constant offset as a special case and becomes an important modeling method that can implement local features on subdivision surfaces and construct shells with non-uniform thickness. This method improves the modeling ability of subdivision surfaces.

参考文献/References:

[1] Maekawa T.Overview of offset curves and surfaces[J]. Computer Aided Design,1999,31(3):165-173.
[2] Ma W.Subdivision surfaces for CAD — an overview[J]. Computer Aided Design,2005,37(7):693-709.
[3] Wu P,Suzuki H,Kuragano J,et al.Three-axis NC cutter path generation for subdivision surface[C] //Proceedings Geometric Modeling and Processing.Los Alamitos:IEEE Computer Society,2004:349-354.
[4] Kurgano J,Suziki H K F.Generation of NC tool path for subdivision surface[C] //Proceedings of CAD/Graphics.Kunming,China:International Academic Publishers,2001:676-682.
[5] Elber G,Cohen E.Error bounded variable distance offset operator for free form curves and surfaces[J].International Journal of Computational Geometry and Applications,1991,1(1):67-78.
[6] Myung-soo K,Eun-joo P,Soon-bum L.Approximation of variable-radius offset curves and its application to Bezier brush-stroke design[J].Computer Aided Design,1993,25(11):684-698.
[7] 周海.细分曲面造型技术研究[D].南京:南京航空航天大学机电学院,2005.
[8] Kobbelt L.Interpolatory subdivision on open quadrilateral nets with arbitrary topology[C] //Computer Graphics Forum:European Association for Computer Graphics 17th Annual Conference.UK:Blackwell Publishers for Eurographics Assoc,1996:409-420.
[9] Halstead M,Kass M,Derose T.Efficient,fair interpolation using Catmull-Clark surfaces[C] //Computer Graphics Proceedings.New York:ACM,1993:35-44.
[10] Suzuki H,Takeuchi S,Kanai T.Subdivision surface fitting to a range of points[C] //Proceedings Seventh Pacific Conference on Computer Graphics and Applications.Los Alamitos:IEEE Computer Society,1999:158-167.
[11] 刘浩.基于四边形网格的细分曲面造型基础技术研究[D].南京:南京航空航天大学机电学院,2005.
[12] Stam J.Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values[C] //SIGGRAPH 98 Conference Proceedings.New York:ACM,1998:395-404.