[1]何钢,廖文和,刘浩,等.Catmull-Clark细分曲面的变距离偏置[J].东南大学学报(自然科学版),2008,38(3):424-428.[doi:10.3969/j.issn.1001-0505.2008.03.012]
 He Gang,Liao Wenhe,Liu Hao,et al.Variable offset of Catmull-Clark subdivision surface[J].Journal of Southeast University (Natural Science Edition),2008,38(3):424-428.[doi:10.3969/j.issn.1001-0505.2008.03.012]
点击复制

Catmull-Clark细分曲面的变距离偏置()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
38
期数:
2008年第3期
页码:
424-428
栏目:
计算机科学与工程
出版日期:
2008-05-20

文章信息/Info

Title:
Variable offset of Catmull-Clark subdivision surface
作者:
何钢 廖文和 刘浩 李秀娟
南京航空航天大学机电学院, 南京 210016
Author(s):
He Gang Liao Wenhe Liu Hao Li Xiujuan
College of Mechanical and Electric Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
关键词:
变距离偏置 Catmull-Clark细分 局部偏置 偏置权值
Keywords:
variable offset Catmull-Clark subdivision local offset offset weight
分类号:
TP391.7
DOI:
10.3969/j.issn.1001-0505.2008.03.012
摘要:
给出了一种Catmull-Clark细分曲面的变距离偏置实现算法. 在指定初始控制顶点对应极限点的偏置距离和偏置权值后,对基网格进行适当加密,新顶点的偏置距离采用带偏置权值的插值细分方法计算; 然后在基网格控制顶点对应极限点的法向偏移指定距离,采用反复迭代的方法求解变距离偏置曲面的控制网格,保证了控制顶点对应极限点的精确偏置. 变距离偏置不仅将偏置距离为常值的等距作为特例,而且作为一种曲面造型手段,可以实现细分曲面的局部成型特征和不均匀厚度薄壳体的构造,增强了细分曲面的造型功能.
Abstract:
An algorithm is presented to implement variable offset of Catmull-Clark subdivision surfaces. After assigning offset distances and offset weights to control vertices, offset distances of new vertices generated during subdivision are determined by the weighted interpolatory subdivision method. Then offsetting corresponding distances at the normal of control vertex’s limit points, control meshes of offset surfaces are generated using iterative method, which assures exact offsetting at control vertex’s limit points. Variable offset takes constant offset as a special case and becomes an important modeling method that can implement local features on subdivision surfaces and construct shells with non-uniform thickness. This method improves the modeling ability of subdivision surfaces.

参考文献/References:

[1] Maekawa T.Overview of offset curves and surfaces[J]. Computer Aided Design,1999,31(3):165-173.
[2] Ma W.Subdivision surfaces for CAD — an overview[J]. Computer Aided Design,2005,37(7):693-709.
[3] Wu P,Suzuki H,Kuragano J,et al.Three-axis NC cutter path generation for subdivision surface[C] //Proceedings Geometric Modeling and Processing.Los Alamitos:IEEE Computer Society,2004:349-354.
[4] Kurgano J,Suziki H K F.Generation of NC tool path for subdivision surface[C] //Proceedings of CAD/Graphics.Kunming,China:International Academic Publishers,2001:676-682.
[5] Elber G,Cohen E.Error bounded variable distance offset operator for free form curves and surfaces[J].International Journal of Computational Geometry and Applications,1991,1(1):67-78.
[6] Myung-soo K,Eun-joo P,Soon-bum L.Approximation of variable-radius offset curves and its application to Bezier brush-stroke design[J].Computer Aided Design,1993,25(11):684-698.
[7] 周海.细分曲面造型技术研究[D].南京:南京航空航天大学机电学院,2005.
[8] Kobbelt L.Interpolatory subdivision on open quadrilateral nets with arbitrary topology[C] //Computer Graphics Forum:European Association for Computer Graphics 17th Annual Conference.UK:Blackwell Publishers for Eurographics Assoc,1996:409-420.
[9] Halstead M,Kass M,Derose T.Efficient,fair interpolation using Catmull-Clark surfaces[C] //Computer Graphics Proceedings.New York:ACM,1993:35-44.
[10] Suzuki H,Takeuchi S,Kanai T.Subdivision surface fitting to a range of points[C] //Proceedings Seventh Pacific Conference on Computer Graphics and Applications.Los Alamitos:IEEE Computer Society,1999:158-167.
[11] 刘浩.基于四边形网格的细分曲面造型基础技术研究[D].南京:南京航空航天大学机电学院,2005.
[12] Stam J.Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values[C] //SIGGRAPH 98 Conference Proceedings.New York:ACM,1998:395-404.

备注/Memo

备注/Memo:
作者简介: 何钢(1975—), 男, 博士生; 廖文和(联系人), 男, 博士, 教授, 博士生导师,cnwho@nuaa.edu.cn.
基金项目: 国防基础科研资助项目.
引文格式: 何钢,廖文和,刘浩,等.Catmull-Clark细分曲面的变距离偏置[J].东南大学学报:自然科学版,2008,38(3):424-428.
更新日期/Last Update: 2008-05-20