[1]易清明.标准SIMO信道盲解卷固定点算法[J].东南大学学报(自然科学版),2008,38(4):574-578.[doi:10.3969/j.issn.1001-0505.2008.04.006]
 Yi Qingming.General SIMO blind deconvolution by fixed-point method[J].Journal of Southeast University (Natural Science Edition),2008,38(4):574-578.[doi:10.3969/j.issn.1001-0505.2008.04.006]
点击复制

标准SIMO信道盲解卷固定点算法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
38
期数:
2008年第4期
页码:
574-578
栏目:
信息与通信工程
出版日期:
2008-07-20

文章信息/Info

Title:
General SIMO blind deconvolution by fixed-point method
作者:
易清明
暨南大学信息科学技术学院, 广州 510632
Author(s):
Yi Qingming
College of Information Science and Technology, Jinan University, Guangzhou 510632, China
关键词:
SIMO IIR 盲解卷
Keywords:
single-input multi-output(SIMO) infinite impulse response(IIR) blind deconvolution
分类号:
TN911.72
DOI:
10.3969/j.issn.1001-0505.2008.04.006
摘要:
从最简单的IIR-SIMO信道出发,采用离散傅立叶变换从理论上推导出了源信号估计值与观测信号的基本关系,据此提出了源信号固定点迭代计算方法,并基于最小均方误差准则给出了确定滤波器阶数的代价函数.在此基础上,进一步将这种分析方法推广到标准SIMO信道,进而最终建立了标准SIMO信道盲解卷固定点新算法.该算法无需设置迭代步长,也不像已有的许多SIMO盲解卷算法一样要求源信号属于有限字符集.针对混迭语音信号进行的仿真结果验证了算法理论分析的正确性和算法的有效性.
Abstract:
Starting from the model of the simplest infinite impulse response(IIR)-single-input multi-output(SIMO)channel, the mathematical relationship between the observed signals and their corresponding sources is theoretically specified using the discrete Fourier transform. On the basis of this relationship, a fixed-point iterative algorithm is first proposed for the simplest IIR-SIMO blind deconvolution. Also, based on least square error(LSE)criterion, a cost function for channel filter order detection is developed for it. Then the simplest IIR-SIMO blind deconvolution method is further extended to the general SIMO channel. In this way, a general SIMO blind deconvolution fixed-point iterative algorithm is finally developed. In contrast to other existing blind deconvolution methods, the proposed algorithm has no step size to setup. In addition, it does not require the source signals to be finite alphabet. These desirable properties of the proposed methods have been demonstrated by mixing speech experiments.

参考文献/References:

[1] Xu G H,Liu H,Tong L,et al.A least-squares approach to blind channel identification[J]. IEEE Trans Signal Processing,1995,43(12):2982-2993.
[2] 刘海林.基于广义特征值的病态混叠盲源分离算法[J].电子学报,2006,3(11):2072-2075.
  Liu Hailin.Blind separation of ill-condition mixed sources based on generalized eigenvalue[J].Acta Electronica Sinica,2006,3(11):2072-2075.(in Chinese)
[3] He Z S,Xie S L,Fu Y L.A novel framework of multiphonic acoustic echo cancellation[J]. Progress in Natural Science,2006,16(9):983-987.
[4] Bofill P,Monte E.Underdetermined convoluted source reconstruction using LP and SOCP,and a neural approximator of the optimizer [C] //Proc of 6th International Conference on Independent Component Analysis and Blind Signal Separation.Charleston,USA,2006:569-576.
[5] 谢胜利,谭北海,傅予力.基于平面聚类算法的欠定混叠盲信号分离[J].自然科学进展,2007,17(6):795-800.
  Xie Shengli,Tan Beihai,Fu Yuli.Blind signal separation of underdetermined mixtures based on clustering algorithms on planes[J].Progress in Natural Science,2007,17(6):795-800.(in Chinese)
[6] Zhang Z Y,Wang J.A new approach to blind identification of SIMO channels with common zeros[C] //Proceedings of the 5th World Congress on Intelligent Control and Automation.Hangzhou,China,2004,2:1593-1596.
[7] Bai Wei,Yang Haifen,Bu Zhiyong.Blind channel identification in SIMO-OFDM systems [C] //2004 International Conference on Communications,Circuits and Systems.Chengdu,China,2004,1:318-321.
[8] Huang Y,Benesty J,Chen J.Optimal step size of the adaptive multichannel LMS algorithm for blind SIMO identification[J]. IEEE Signal Processing Letters,2005,12(3):173-176.
[9] 李晓陆,李荣华,何昭水,等.SIMO信道的卷积盲分离新算法[J].系统工程与电子技术,2007,29(9):1436-1440.
  Li Xiaolu,Li Ronghua,He Zhaoshui,et al.New blind deconvolution algorithm for SIMO channel[J].Systems Engineering and Electronics,2007,29(9):1436-1440.(in Chinese)
[10] Bai Erwei,Fu Minyue.Blind system identification and channel equalization of IIR systems without statistical information[J]. IEEE Trans Signal Processing,1999,47(7):1910-1921.
[11] Bofill P,Zibulevsky M.Underdetermined source separation using sparse representations[J]. Signal Processing,2001,81(11):2353-2362.

备注/Memo

备注/Memo:
作者简介: 易清明(1965—),女,博士,副教授,tyqm@jnu.edu.cn.
基金项目: 国家自然科学基金资助项目(60672061)、广东省科技计划攻关资助项目(2005B10101013).
引文格式: 易清明.标准SIMO信道盲解卷固定点算法[J].东南大学学报:自然科学版,2008,38(4):574-578.
更新日期/Last Update: 2008-07-20