[1]张永,吴晓蓓,张宏,等.基于Pareto协同进化算法的高维模糊分类系统设计[J].东南大学学报(自然科学版),2008,38(4):626-631.[doi:10.3969/j.issn.1001-0505.2008.04.016]
 Zhang Yong,Wu Xiaobei,Zhang Hong,et al.Design of high-dimensional fuzzy classification system based on Pareto co-evolutionary algorithm[J].Journal of Southeast University (Natural Science Edition),2008,38(4):626-631.[doi:10.3969/j.issn.1001-0505.2008.04.016]
点击复制

基于Pareto协同进化算法的高维模糊分类系统设计()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
38
期数:
2008年第4期
页码:
626-631
栏目:
自动化
出版日期:
2008-07-20

文章信息/Info

Title:
Design of high-dimensional fuzzy classification system based on Pareto co-evolutionary algorithm
作者:
张永1 吴晓蓓1 张宏2 徐志良1 胡维礼1
1 南京理工大学自动化学院, 南京 210094; 2 南京理工大学计算机科学与技术学院, 南京 210094
Author(s):
Zhang Yong1 Wu Xiaobei1 Zhang Hong2 Xu Zhiliang1 Hu Weili1
1 School of Automation, Nanjing University of Science and Technology, Nanjing 210094,China
2 School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing 210094, China
关键词:
模糊分类系统 模糊聚类 Pareto解 协同进化算法 解释性
Keywords:
fuzzy classification system fuzzy clustering Pareto optimal solution co-evolutionary algorithm interpretability
分类号:
TP273
DOI:
10.3969/j.issn.1001-0505.2008.04.016
摘要:
提出一种可同时构造多个精确性和解释性较好折衷的高维模糊分类系统的设计方法.该方法首先利用Simba算法进行特征变量选择,然后采用模糊聚类算法辨识初始的模糊模型,最后利用Pareto协同进化算法对所获得的初始模糊模型进行结构和参数优化.其中,Pareto协同进化算法采用了一种新的基于非支配排序的多种群合作策略.为提高模型的解释性,在Pareto协同进化算法中利用基于相似性的模型简化方法对模型进行约简.利用该方法对Wine典型问题进行分类,仿真结果验证了方法的有效性.
Abstract:
A novel approach for constructing accurate and interpretable high-dimensional fuzzy classification systems is proposed. First, feature selection is accomplished by the Simba algorithm; secondly, the initial fuzzy system is identified using the fuzzy clustering algorithm; finally, the structure and parameters of the fuzzy system are optimized by the Pareto co-evolutionary algorithm. The Pareto co-evolutionary algorithm is calculated by a new non-dominated sorting method. In order to improve the interpretability of the fuzzy system, the similarity-driven rule-based simplification techniques are used to reduce the fuzzy system. The proposed approach has been applied to Wine benchmark problem, and the results show its validity.

参考文献/References:

[1] Pulkkinen P,Koivisto H.Identification of interpretable and accurate fuzzy classifiers and function estimators with hybrid methods[J].Applied Soft Computing,2007,7(2):520-533.
[2] Eftekhari M,Katebi S D,Karimi M,et al.Eliciting transparent fuzzy model using differential evolution[J]. Applied Soft Computing,2008,8(1):466-476.
[3] Roubos H,Setnes M.Compact and transparent fuzzy models and classifiers through iterative complexity reduction [J]. IEEE Trans on Fuzzy Systems,2001,9(4):516-524.
[4] Paredis J. Coevolutionary computation,artificial life 2 [M].MIT Press,1995:355-375.
[5] 张永,吴晓蓓,向峥嵘,等.复杂模糊分类系统的协同进化设计方法[J].控制理论与应用,2007,24(1):725-731.
  Zhang Yong,Wu Xiaobei,Xiang Zhengrong,et al.Design of complex fuzzy classification system based on cooperative co-evolutionary algorithm[J].Journal of Control Theory and Applications,2007,24(1):725-731.(in Chinese)
[6] Gilad-Bachrach Ran,Navot Amir,Tishby Naftali.Margin based feature selection—theory and algorithms[C] //Proceedings of the 21st International Conference on Machine Learning.Banff,Canada,2004:337-344.
[7] Abonyi J,Roubos H,Szeifert F.Data-driven generation of compact,accurate,and linguistically sound fuzzy classifiers based on a decision tree initialization[J]. International Journal of Approximate Reasoning,2003,32(1):1-21.
[8] Xing Z Y,Jia L M,Zhang Y.A case study of data-driven interpretable fuzzy modeling[J].Acta Automatica Sinica,2005,31(6):815-824.
[9] Setnes M,Babuska R,Kaymak U,et al.Similarity measures in fuzzy rule base simplification [J]. IEEE Trans on Systems,Man and Cybernetics,1998,28(3):376-386.
[10] Jin Y,von Seelen W,Sendhoff B.On generating FC3 fuzzy rule systems from data using evolution strategies[J].IEEE Trans on Systems,Man and Cybernetics,1999,29(6):829-845.
[11] Deb K,Pratap A,Agarwal S,et al.A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J]. IEEE Trans Evol Comput,2002,6(2):182-197.
[12] Ishibuchi H,Nakashima T,Murata T.Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems[J].IEEE Trans on Systems,Man and Cybernetics,1999,29(5):601-618.
[13] Corcoran A L,Sen S.Using real-valued genetic algorithms to evolve rule sets for classification[C] //Proc 1st IEEE Conf on Evolutionary Computation.Orlando,FL,USA,1994:120-124.
[14] Setnes M,Roubos H.GA-fuzzy modeling and classification:complexity and performance[J]. IEEE Transactions on Fuzzy Systems,2000,8(5):509-522.

相似文献/References:

[1]邢宗义,侯远龙,贾利民.基于多目标遗传算法的模糊分类系统设计[J].东南大学学报(自然科学版),2006,36(5):725.[doi:10.3969/j.issn.1001-0505.2006.05.009]
 Xing Zongyi,Hou Yuanlong,Jia Limin.Design of multi-objective genetic-based fuzzy classification system[J].Journal of Southeast University (Natural Science Edition),2006,36(4):725.[doi:10.3969/j.issn.1001-0505.2006.05.009]
[2]陆建江,徐宝文,邹晓峰,等.模糊关联规则的并行挖掘算法[J].东南大学学报(自然科学版),2005,35(2):165.[doi:10.3969/j.issn.1001-0505.2005.02.001]
 Lu Jianjiang,Xu Baowen,Zou Xiaofeng,et al.Parallel mining algorithm for fuzzy association rules[J].Journal of Southeast University (Natural Science Edition),2005,35(4):165.[doi:10.3969/j.issn.1001-0505.2005.02.001]
[3]宋爱波,胡孔法,董逸生.Web日志挖掘[J].东南大学学报(自然科学版),2002,32(1):15.[doi:10.3969/j.issn.1001-0505.2002.01.004]
 Song Aibo,Hu Kongfa,Dong Yisheng.Research on Weblog mining[J].Journal of Southeast University (Natural Science Edition),2002,32(4):15.[doi:10.3969/j.issn.1001-0505.2002.01.004]
[4]李铁柱,王炜,武勇.城市道路交通空气污染灰色聚类决策评价[J].东南大学学报(自然科学版),2001,31(3):57.[doi:10.3969/j.issn.1001-0505.2001.03.014]
 Li Tiezhu,Wang Wei,Wu Yong.Grey Clustering Decision-Making Evaluation on City Street Traffic Atmospheric Pollution[J].Journal of Southeast University (Natural Science Edition),2001,31(4):57.[doi:10.3969/j.issn.1001-0505.2001.03.014]
[5]朱晓文,李爱群,赵启林,等.结构监测系统中传感器故障判别方法[J].东南大学学报(自然科学版),2007,37(2):315.[doi:10.3969/j.issn.1001-0505.2007.02.026]
 Zhu Xiaowen,Li Aiqun,Zhao Qilin,et al.Estimate methods for thundering observed data caused by fault of monitoring system[J].Journal of Southeast University (Natural Science Edition),2007,37(4):315.[doi:10.3969/j.issn.1001-0505.2007.02.026]
[6]王培珍,陈维南.基于模糊聚类与二维阈值的图像分割[J].东南大学学报(自然科学版),1998,28(6):74.[doi:10.3969/j.issn.1001-0505.1998.06.015]
 Wang Peizhen,Image Segmentation Based on Fuzzy Clustering and Two Dimensional Thresholding[J].Journal of Southeast University (Natural Science Edition),1998,28(4):74.[doi:10.3969/j.issn.1001-0505.1998.06.015]
[7]陆建江,徐宝文.区间数据的并行模糊聚类算法[J].东南大学学报(自然科学版),2003,33(4):406.[doi:10.3969/j.issn.1001-0505.2003.04.007]
 Lu Jianjiang,Xu Baowen.Parallel fuzzy clustering algorithm for interval data[J].Journal of Southeast University (Natural Science Edition),2003,33(4):406.[doi:10.3969/j.issn.1001-0505.2003.04.007]

备注/Memo

备注/Memo:
作者简介: 张永(1969—),男,博士,讲师,zy69813@gmail.com.
基金项目: 江苏省博士后科研资助计划资助项目(0702027B)、江苏省自然科学基金资助项目(BK2006202).
引文格式: 张永,吴晓蓓,张宏,等.基于Pareto协同进化算法的高维模糊分类系统设计[J].东南大学学报:自然科学版,2008,38(4):626-631.
更新日期/Last Update: 2008-07-20