[1]张鑫杰,倪中华.纳米粒子介电泳的分子动力学模拟[J].东南大学学报(自然科学版),2008,38(5):884-888.[doi:10.3969/j.issn.1001-0505.2008.05.027]
 Zhang Xinjie,Ni Zhonghua.Molecular dynamics simulation for dielectrophoresis of nanoparticles[J].Journal of Southeast University (Natural Science Edition),2008,38(5):884-888.[doi:10.3969/j.issn.1001-0505.2008.05.027]
点击复制

纳米粒子介电泳的分子动力学模拟()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
38
期数:
2008年第5期
页码:
884-888
栏目:
数学、物理学、力学
出版日期:
2008-09-20

文章信息/Info

Title:
Molecular dynamics simulation for dielectrophoresis of nanoparticles
作者:
张鑫杰 倪中华
东南大学机械工程学院, 南京 211189
Author(s):
Zhang Xinjie Ni Zhonghua
School of Mechanical Engineering, Southeast University, Nanjing 211189, China
关键词:
纳米胶体 介电泳 分子动力学模拟
Keywords:
nanocolloid dielectrophoresis molecular dynamics simulation
分类号:
O411.3
DOI:
10.3969/j.issn.1001-0505.2008.05.027
摘要:
为研究微流体环境下纳米粒子的介电泳现象并分析其介电泳特性,采用非平衡态分子动力学方法对纳米胶体粒子及其周围溶剂粒子进行建模.介电泳模拟之前,通过对系统能量和温度的趋衡过程进行模拟,使纳米胶体所处的微流体系统达到稳定状态,并得出系统能量以及温度变化过程的趋衡图.对纳米胶体模型施加非均匀电场,使胶体电偶极化.变化非均匀电场强度,研究胶体模型失效的一般规律.发现随着非均匀电场强度的增加,小离子有不断脱离大离子表面的趋势,胶体模型失效的临界电场强度参数为E0=015ε/(eσ).此外,对不同极性的纳米胶体的介电泳现象进行模拟,发现在正介电泳情况下,胶体的电偶极距不断增大,且电偶极距大的胶体有较大的介电泳速度和位移.
Abstract:
In order to study the dielectrophoresis(DEP)phenomena of nanoparticles in microfluidic environment and analyze the DEP characteristic, nonequilibrium molecular dynamics simulation method is used to model the nanocolloid particle and solvent particles. Before DEP simulation, the equilibrium process of energy and temperature of the system is simulated to make the microfluidic system stable. Then, the figures of equilibrium process are presented. Nonuniform electric field is added to nanocolloid model, and the colloid is polarized. Changing the electric field gradient, the general principle of invalidation of colloid model is studied. Result shows that the microions have a tendency of stripping from the macroion’s surface with the enhancement of nonuniform electric field gradient, and the critical intensity of electric field which invalidates the colloid model is nearly E0=015ε/(eσ). Moreover, DEP processes of colloids of different polarities are simulated, results show that the dipole moment of nanocolloid increases continually under positive DEP conditions, and colloid which has stronger dipole moment also possesses quicker DEP velocity and bigger displacement.

参考文献/References:

[1] Pohl H.Dielectrophoresis [M].New York:Cambridge University Press,1978:350-432.
[2] Whitesides G M.The origins and the future of microfluidics[J]. Nature, 2006,442(7101):368-373.
[3] Hughes M P.Strategies for dielectrophoretic separation in laboratory-on-a-chip systems[J].Electrophoresis,2002,23(16):2569-2582.
[4] Huang Y,Wang X B,Tame J,et al.Electrokinetic behaviour of colloidal particles in traveling electric fields:studies using yeast cells[J].J Phys D Appl Phys,1993,26(9):312-322.
[5] Wang X B,Huang Y,Becker F F,et al.A unified theory of dielectrophoresis and traveling wave dielectrophoresis[J]. J Phys D Appl Phys,1994,27(7):1571-1574.
[6] Zheng L F,Li S D,Burke P J,et al.Towards single molecular manipulation with dielectrophoresis using nanoelectrodes[C] //Proceedings of the 3rd IEEE Conference on Nanotechnology.San Francisco,CA,USA,2003,1:437-440.
[7] Wong P K,Wang T H,Deval Joanne H,et al.Electrokinetics in micro devices for biotechnology applications[J].IEEE/ASME Transactions on Mechantronic,2003,9(2):1-12.
[8] Li W H,Du H,Chen D F,et al.Analysis of dielectrophoretic electrode arrays for nanoparticle manipulation[J]. Computational Materials Science,2004, 30(3):320-325.
[9] Salonen E,Terama E,Vattulainen I,et al.Dielectrophoresis of nanocolloids:a molecular dynamics study[J]. Eur Phys,2005,18(2):133-142.
[10] Yuan L,Amberg G,Aldaeus F,et al.Simulation of dielectrophoretic motion of microparticles using a molecular dynamics approach[C] //Proceedings of ICNMM2006.Limerick,Ireland,2006:1-10.
[11] Linse P,Lobaskin V.Electrostatic attraction and phase separation in solutions of like-charged colloidal particles[J]. Physical Review Letters,1999, 83(20):4208-4211.
[12] Tanaka M,Grosberg A Y.Electrophoresis of a charge-inverted macroion complex:molecular dynamics study[J]. Eur Phys J E,2002,7(4):371-379.
[13] 文玉华,朱如曾,周富信,等.分子动力学模拟的主要技术[J].力学进展.2003,33(1):56-65.
  Wen Yuhua,Zhu Ruzeng,Zhou Fuxin,et al.An over view on molecular dynamics simulation[J].Advances in Mechanics,2003,33(1):56-65.(in Chinese)

备注/Memo

备注/Memo:
作者简介: 张鑫杰(1984—),男,硕士生; 倪中华(联系人),男,博士,教授,博士生导师,nzh2003@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(50675033)、国家高技术研究发展计划(863计划)资助项目(2006AA04Z351).
引文格式: 张鑫杰,倪中华.纳米粒子介电泳的分子动力学模拟[J].东南大学学报:自然科学版,2008,38(5):884-888.
更新日期/Last Update: 2008-09-20