[1]王福来,达庆利.Lorenz映射系统中连续整数周期轨道的存在性[J].东南大学学报(自然科学版),2008,38(5):923-927.[doi:10.3969/j.issn.1001-0505.2008.05.035]
 Wang Fulai,Da Qingli.Consturctive periodic orbits in Lorenz maps systems[J].Journal of Southeast University (Natural Science Edition),2008,38(5):923-927.[doi:10.3969/j.issn.1001-0505.2008.05.035]
点击复制

Lorenz映射系统中连续整数周期轨道的存在性()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
38
期数:
2008年第5期
页码:
923-927
栏目:
经济与管理
出版日期:
2008-09-20

文章信息/Info

Title:
Consturctive periodic orbits in Lorenz maps systems
作者:
王福来12 达庆利2
1 东南大学经济与管理学院, 南京 210096; 2 浙江财经学院数学与统计学院, 杭州 310012
Author(s):
Wang Fulai12 Da Qingli1
1 School of Economics and Management, Southeast University, Nanjing 210096, China
2 School of Mathematics and Statistics, Zhejiang University of Finance and Economics, Hangzhou 310012, China
关键词:
Lorenz映射 符号动力学 混沌 连续周期轨道
Keywords:
Lorenz maps symbolic dynamics chaos orbits of consecutive periods
分类号:
N941.7;O177.99
DOI:
10.3969/j.issn.1001-0505.2008.05.035
摘要:
以符号动力学为基础,改进了Lorenz映射的允字条件.定义了单调1-基本字节和单调0-基本字节的概念,这些单调基本字节形成了周期序列的所有可能的基本字节,因此在满足允字条件下,给寻找周期轨道的算法带来了很大方便.证明了一般Lorenz映射系统存在连续整数周期轨道的充要条件是存在某条件下的2个互素周期,克服了Sarkovskii关于连续整数周期点对于函数连续性的限制,而所讨论的Lorenz映射也没有作每个单调支为线性的要求.给出了一些例子中连续整数周期轨道的符号序列的算法与表达形式,所提出的算法效率高,并可在作相应变化后推广到其他动力系统中.
Abstract:
Based on symbolic dynamics, the admissibility conditions are improved and thus the concepts of monotone basic 1-strings and 0-strings are defined. The basic strings generate all the possible basic strings of any periodic series thus the concepts improve the algorithm of finding periods under the admissibility conditions. It provides a satisfactory and necessary condition for existence of consecutive periodic orbits of Lorenz maps, that is, there exist two co-prime periods under some conditions, which overcomes the restriction of continuity of the functions in the Sarkovskii’s theorem on consecutive periods, and the Lorenz maps are not restricted within piecewise linear ones. A corresponding algorithm and results of consecutive periods by symbolic series are given for some examples. The algorithm is of high efficiency and can be extended to other dynamic systems after some corresponding variation.

参考文献/References:

[1] 丁义明,范文涛.一簇Lorenz映射的混沌行为与统计稳定性[J].数学物理学报,2001,21A(4),559-569.
  Ding Yiming,Fan Wentao.The chaotic behavior and statistically stable behavior of a family of Lorenz maps[J].Acta Mathematiea Scientia,2001,21A(4):559-569.(in Chinese)
[2] Peng Shou-Li,Du Lei-Ming.Dual star products and symbolic dynamics of Lorenz maps with the same entropy[J].Physics Letters A,1999,261(1/2):63-73.
[3] Zhou Zhong,Peng Shou-Li.Cyclic star products and universalities in symbolic dynamics of trimodal maps[J].Physica D,2000,140(3/4):213-226.
[4] Peng Shou-Li,Zhang Xu-Sheng,Cao Ke-Fei.Dual star products and metric universality in symbolic dynamics of three letters[J]. Physics Letters A,1998, 246(1/2):87-96.
[5] Silva L,Ramos J S.Topological invariants and renormalization of Lorenz maps[J]. Physica D,2002,162(3/4):233-243.
[6] Zheng Wei-Mou.Predicting orbits of the Lorenz equation from symbolic dynamics[J]. Physica D,1997,109(1/2):191-198.
[7] 王福来,达庆利.广义Lorenz映射的混沌行为及不变密度[J].东南大学学报:自然科学版,2007,37(4):711-715.
  Wang Fulai,Da Qingli.Chaotic behavior of generalized Lorenz maps and its invariant density [J]. Journal of Southeast University:Natural Science Edition,2007,37(4):711-715.(in Chinese)
[8] Stefan P.A theorem of Sarkovskii on the existence of periodic orbits of continuous endomorphisms of the real line,comm[J]. Math Phys,1977,54:237-248.
[9] Li T Y,Yorke J A.Period three implies chaos[J].Amer Math Monthly,1975,82:985-992.

备注/Memo

备注/Memo:
作者简介: 王福来(1970—),男,博士生,副教授; 达庆利(联系人),男,教授,博士生导师,dqlseunj@126.com.
基金项目: 浙江省教育厅科研资助项目(20070814)、国家自然科学基金资助项目(10871168).
引文格式: 王福来,达庆利.Lorenz映射系统中连续整数周期轨道的存在性[J].东南大学学报:自然科学版,2008,38(5):923-927.
更新日期/Last Update: 2008-09-20