[1]胡孔法,张长海,陈崚,等.一种面向物流数据分析的路径序列挖掘算法ImGSP[J].东南大学学报(自然科学版),2008,38(6):970-974.[doi:10.3969/j.issn.1001-0505.2008.06.007]
 Hu Kongfa,Zhang Changhai,Chen Ling,et al.ImGSP:a path sequence mining algorithm for product flow analysis[J].Journal of Southeast University (Natural Science Edition),2008,38(6):970-974.[doi:10.3969/j.issn.1001-0505.2008.06.007]
点击复制

一种面向物流数据分析的路径序列挖掘算法ImGSP()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
38
期数:
2008年第6期
页码:
970-974
栏目:
计算机科学与工程
出版日期:
2008-11-20

文章信息/Info

Title:
ImGSP:a path sequence mining algorithm for product flow analysis
作者:
胡孔法12 张长海2 陈崚2 达庆利1
1 东南大学经济管理学院, 南京 210096; 2 扬州大学信息工程学院, 扬州 225009
Author(s):
Hu Kongfa12 Zhang Changhai2 Chen Ling2 Da Qingli12
1 School of Economics and Management, Southeast University, Nanjing 210096, China
2 College of Information Engineering, Yangzhou University, Yangzhou 225009, China
关键词:
物流管理系统 数据挖掘 关联规则 序列模式挖掘
Keywords:
logistic management system data mining association rules sequential patterns mining
分类号:
TP311;N945
DOI:
10.3969/j.issn.1001-0505.2008.06.007
摘要:
为了有效地挖掘物流管理系统中的物流频繁路径序列模式,提出了一种针对物流数据分析的路径序列挖掘算法ImGSP算法. ImGSP算法通过对原始路径数据库筛选,选出路径序列长度大于或等于候选序列长度的路径序列,有针对性地产生过度候选序列,来约减候选序列.实验结果表明: ImGSP算法能够有效地减少候选序列数量,生成频繁路径序列模式,进而产生物流中有用的规则.该方法不仅缩小了扫描数据库的规模,而且减少了生成频繁序列的候选序列集合.
Abstract:
Currently the data in logistic system is very huge, so the efficiency of mining frequent path sequences needs to be improved. Therefore, an efficient algorithm-ImGSP(improved generalized sequential patterns)for analyzing logistic data is presented. In this method the original database is screened to find the path sequences that is greater than or equal to the candidate sequences in the length, and then generate the candidate sequences through generating the transitional candidate sequences. The experiment results show that the ImGSP algorithm can effectively generate frequent patterns by reducing the volume of sequences, and then find the valuable rules. The method not only reduces the size of scanning database but also reduces the candidate sequences set.

参考文献/References:

[1] Han J,Kamber M. Data mining concepts and techniques [M].2nd ed.北京:机械工业出版社,2006:489-513.
[2] Park J S,Psy U.An efficient parallel data mining for association rules[C] //Proc of the 4th on Information and Knowledge Management.New York:ACM Press,1995:31-36.
[3] Cheung D W,Han J,Ng V T,et al.A fast distributed algorithm for mining association rules[C] //Proc of the 4th International Conference on Parallel and Distributed Information Systems.Los Alamitos,USA:IEEE Computer Society Press,1996:31-44.
[4] 倪旻,徐晓飞,邓胜春.基于关联规则的零部件供应商选择优化[J].计算机集成制造系统,2004,10(3):13-16.
  Ni Min,Xu Xiaofei,Deng Shengchun.Optimization of components suppliers’ selection based on association rule[J]. Computer Integrated Manufacturing Systems,2004,10(3):13-16.(in Chinese)
[5] Zaki M.Spade:an efficient algorithm for mining frequent sequences [J]. Machine Learning,2001,41(2):31-60.
[6] Pei J,Han J,Pinto H,et al.PrefixSpan:mining sequential patterns efficiently by prefix-projected pattern growth[J].IEEE Transactions on Knowledge & Data Engineering,2004,16(1):1424-1440.
[7] Zhang Changhai,Hu Kongfa,Liu Haidong,et al.FMGSP:an efficient method of mining global sequential patterns[C] //Proc of the 4th International Conference on Fuzzy Systems and Knowledge Discovery.Los Alamitos:IEEE Computer Society,2007:761-765.
[8] 陆介平,杨明,孙志挥,等.快速挖掘全局最大频繁项目集[J].软件学报,2005,16(4):553-560.
  Lu Jieping,Yang Ming,Sun Zhihui,et al.Fast mining of global maximum frequent itemsets[J]. Journal of Software,2005,16(4):553-560.(in Chinese)
[9] 胡孔法,张长海,陈崚,等.分布式序列模式挖掘技术研究[J].计算机集成制造系统,2007,13(11):2229-2235.
  Hu Kongfa,Zhang Changhai,Chen Ling,et al.Global sequential pattern mining in distributed environment[J]. Computer Integrated Manufacturing Systems,2007,13(11):2229-2235.(in Chinese)
[10] Srikant R,Agrawal R.Mining sequential patterns:generalizations and performance improvements[C] //Proc of 5th International Conference on Extending Database Technology.Heidelberg:Springer,1996:3-17.
[11] 张长海,胡孔法,陈崚.序列模式挖掘算法综述[J].扬州大学学报:自然科学版,2007,10(1):41-46.
  Zhang Changhai,Hu Kongfa,Chen Ling.Research on sequential pattern mining algorithms[J]. Journal of Yangzhou University:Natural Science Edition,2007,10(1):41-46.(in Chinese)
  -关于“散乱点云去噪算法的研究与实现”一文的撤稿声明
  “散乱点云去噪算法的研究与实现”一文刊登在2007年11月20日出版的《东南大学学报(自然科学版)》2007年第37卷第6期第1108-1112页上。因当初对一些特殊数据处理的情况考虑不周,导致部分实验结果出现偏差,实现方法有待进一步研究和验证。为避免误导读者,本文作者现声明撤销此稿,请勿再以任何方式引用该文,欢迎该领域的科研工作者批评指正。
  (刘大峰,廖文和,戴宁,程筱胜 )/(2008年11月20日)

相似文献/References:

[1]吉根林,凌霄汉,杨明.一种基于集成学习的分布式聚类算法[J].东南大学学报(自然科学版),2007,37(4):585.[doi:10.3969/j.issn.1001-0505.2007.04.008]
 Ji Genlin,Ling Xiaohan,Yang Ming.Distributed clustering algorithm based on ensemble learning[J].Journal of Southeast University (Natural Science Edition),2007,37(6):585.[doi:10.3969/j.issn.1001-0505.2007.04.008]
[2]陆介平,刘月波,倪巍伟,等.基于投影数据库的序列模式挖掘增量式更新算法[J].东南大学学报(自然科学版),2006,36(3):457.[doi:10.3969/j.issn.1001-0505.2006.03.026]
 Lu Jieping,Liu Yuebo,Ni Weiwei,et al.Incremental updating algorithm for sequence patterns mining based on projected database[J].Journal of Southeast University (Natural Science Edition),2006,36(6):457.[doi:10.3969/j.issn.1001-0505.2006.03.026]
[3]宋爱波,胡孔法,董逸生.Web日志挖掘[J].东南大学学报(自然科学版),2002,32(1):15.[doi:10.3969/j.issn.1001-0505.2002.01.004]
 Song Aibo,Hu Kongfa,Dong Yisheng.Research on Weblog mining[J].Journal of Southeast University (Natural Science Edition),2002,32(6):15.[doi:10.3969/j.issn.1001-0505.2002.01.004]
[4]吉根林,孙志挥.一种基于可信度最优的数量关联规则挖掘算法[J].东南大学学报(自然科学版),2001,31(2):31.[doi:10.3969/j.issn.1001-0505.2001.02.008]
 Ji Genlin,Sun Zhihui.An Algorithm for Mining Optimized Confidence Quantitative Association Rules[J].Journal of Southeast University (Natural Science Edition),2001,31(6):31.[doi:10.3969/j.issn.1001-0505.2001.02.008]
[5]郭海燕,李枭雄,李拟珺,等.基于基频状态和帧间相关性的单通道语音分离算法[J].东南大学学报(自然科学版),2014,44(6):1099.[doi:10.3969/j.issn.1001-0505.2014.06.001]
 Guo Haiyan,Li Xiaoxiong,Li Nijun,et al.Single-channel speech separation based on pitch state and interframe correlation[J].Journal of Southeast University (Natural Science Edition),2014,44(6):1099.[doi:10.3969/j.issn.1001-0505.2014.06.001]

备注/Memo

备注/Memo:
作者简介: 胡孔法(1970—),男,博士,副教授, kfhu05@126.com.
基金项目: 国家自然科学基金资助项目(60773103,60673060,70772059)、中国博士后科学基金资助项目(20070420954)、江苏省“青蓝工程”基金资助项目.
引文格式: 胡孔法,张长海,陈崚,等.一种面向物流数据分析的路径序列挖掘算法ImGSP[J].东南大学学报:自然科学版,2008,38(6):970-974.
更新日期/Last Update: 2008-11-20