[1]徐国政,宋爱国,李会军.基于模糊推理的上肢康复机器人自适应阻抗控制[J].东南大学学报(自然科学版),2009,39(1):156-160.[doi:10.3969/j.issn.1001-0505.2009.01.030]
 Xu Guozheng,Song Aiguo,Li Huijun.Fuzzy-based adaptive impedance control for upper-limb rehabilitation robot[J].Journal of Southeast University (Natural Science Edition),2009,39(1):156-160.[doi:10.3969/j.issn.1001-0505.2009.01.030]
点击复制

基于模糊推理的上肢康复机器人自适应阻抗控制()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
39
期数:
2009年第1期
页码:
156-160
栏目:
自动化
出版日期:
2009-01-20

文章信息/Info

Title:
Fuzzy-based adaptive impedance control for upper-limb rehabilitation robot
作者:
徐国政 宋爱国 李会军
东南大学仪器科学与工程学院,南京 210096
Author(s):
Xu Guozheng Song Aiguo Li Huijun
School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
关键词:
康复机器人 参数辨识 模糊推理 自适应阻抗控制
Keywords:
rehabilitation robot parameter identification fuzzy inference adaptive impedance control
分类号:
TP242
DOI:
10.3969/j.issn.1001-0505.2009.01.030
摘要:
根据患肢的病情特点为患肢康复运动提供最优的辅助力,保持系统的稳定,是机器人辅助康复控制技术中的关键所在.针对此问题在传统阻抗控制方法基础上,提出一种基于力参考值在线模糊调整的模糊自适应阻抗控制算法.该算法首先对患肢机械阻抗参数进行在线辨识,然后根据辨识得到的参数,运用模糊推理技术对康复机器人末端同患肢之间相互作用力的期望值以及目标阻抗控制参数进行实时调整.分析和仿真试验结果表明,该方法较传统阻抗控制方法更能有效地适应患肢病情的变化,具有较好的稳定性和鲁棒性.
Abstract:
Providing optimal assistant force for upper-limb rehabilitation training according to the patient circumstance and characteristic is one of the most important considerations in designing rehabilitation robot. The purpose of our study is to develop a fuzzy adaptive control strategy based on traditional impedance control approach for providing time-varying force to stroke patients. An online identification method is used to estimate impaired limb’s mechanical impedance parameters. By using fuzzy adaptive algorithm, the desired force and impedance control parameters are adjusted automatically according to the patient physical/physiological condition and rehabilitation phase. Analysis and simulation results indicate that the proposed algorithm is much more stable and robust than traditional impedance control method even in the case when the patient condition changes abruptly.

参考文献/References:

[1] Krebs H I,Hogan N,Aisen M L,et al.Robot-aided neurorehabilitation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,1998,6(1):75-87.
[2] Lum P S,Burgar C G,Kenny D E,et al.Quantification of force abnormalities during passive and active-assisted upper-limb reaching movements in post-stroke hemiparesis[J].IEEE Transactions on Biomechanical Engineering,1999,46(6):652-662.
[3] Riener R,Nef T,Colombo G.Robot-aided neurorehabilitation of the upper extremities [J]. Medical and Biological Engineering and Computing,2005,43(1):2-10.
[4] Kahn L E,Zygman M L,Rymer W Z.Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke:a randomized controlled pilot study [J].Journal of NeuroEngineering and Rehabilitation,2006,3(12):1-13.
[5] Ju M S,Lin C C K,Lin D H,et al.A rehabilitation robot with force-position hybrid fuzzy controller:hybrid fuzzy control of rehabilitation robot [J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2005,13(3):349-358.
[6] Masiero S,Celia A,Rosati G,et al.Robotic-assisted rehabilitation of the upper limb after acute stroke [J]. Archives of Physical Medicine and Rehabilitation,2007,88(2):142-149.
[7] 赵钛,李恩江.现代偏瘫治疗学[M].北京:人民军医出版社,1996.
[8] Lin C C,Ju M S,Lin C W,et al.The pendulum test for evaluating spasticity of the elbow joint [J]. Archives of Physical Medicine and Rehabilitation,2003,84(1):69-74.
[9] Pizzi A,Carlucci G,Falsini C,et al.Evaluation of upper-limb spasticity after stroke:a clinical and neurophysiologic study [J].Archives of Physical Medicine and Rehabilitation,2005,86(3):410-415.
[10] Hogan N.Impedance control:an approach to manipulation:part 1-theory,part 2-implementation,and part 3-application [J].ASME Journal of Dynamic Systems,Measurement and Control,1985,107(1):1-24.
[11] Tsuji T,Tanaka Y.On-line learning of robot arm impedance using neural networks [J]. Robotics and Autonomous Systems,2005,52(4):257-271.

相似文献/References:

[1]袁君,陈贝,朱光灿.采用混沌粒子群优化算法的水质模型参数辨识[J].东南大学学报(自然科学版),2009,39(5):1018.[doi:10.3969/j.issn.1001-0505.2009.05.030]
 Yuan Jun,Chen Bei,Zhu Guangcan.Parameter identification of water quality model based on chaotic particle swarm optimization[J].Journal of Southeast University (Natural Science Edition),2009,39(1):1018.[doi:10.3969/j.issn.1001-0505.2009.05.030]
[2]陈俊杰,黄惟一,宋爱国,等.机器人系统中环境动力学模型及其参数辨识[J].东南大学学报(自然科学版),2002,32(1):64.[doi:10.3969/j.issn.1001-0505.2002.01.015]
 Chen Junjie,Huang Weiyi,Song Aiguo,et al.Dynamic model of environment and its parameters identification in robot systems[J].Journal of Southeast University (Natural Science Edition),2002,32(1):64.[doi:10.3969/j.issn.1001-0505.2002.01.015]
[3]林辉,吕帅帅.基于双STF-UKF算法的永磁同步电机参数联合估计[J].东南大学学报(自然科学版),2016,46(1):49.[doi:10.3969/j.issn.1001-0505.2016.01.009]
 Lin Hui,Lü Shuaishuai.PMSM parameters estimation based on dual STF-UKF algorithm[J].Journal of Southeast University (Natural Science Edition),2016,46(1):49.[doi:10.3969/j.issn.1001-0505.2016.01.009]

备注/Memo

备注/Memo:
作者简介: 徐国政(1979—),男,博士生; 宋爱国(联系人),男,博士,教授,博士生导师,a.g.song@seu.edu.cn.
基金项目: 教育部重点资助项目(107053)、江苏省六大高峰人才资助项目(06-D-031)、江苏省国际合作资助项目(BZ2006046).
引文格式: 徐国政,宋爱国,李会军.基于模糊推理的上肢康复机器人自适应阻抗控制[J].东南大学学报:自然科学版,2009,39(1):156-160.
更新日期/Last Update: 2009-01-20