[1]陈兰,金远平.一种基于协同推荐的网页排序算法[J].东南大学学报(自然科学版),2009,39(3):453-458.[doi:10.3969/j.issn.1001-0505.2009.03.007]
 Chen Lan,Jin Yuanping.Web page ranking algorithm based on collaborative recommendation[J].Journal of Southeast University (Natural Science Edition),2009,39(3):453-458.[doi:10.3969/j.issn.1001-0505.2009.03.007]
点击复制

一种基于协同推荐的网页排序算法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
39
期数:
2009年第3期
页码:
453-458
栏目:
计算机科学与工程
出版日期:
2009-05-20

文章信息/Info

Title:
Web page ranking algorithm based on collaborative recommendation
作者:
陈兰1 金远平2
1 东南大学计算机科学与工程学院, 南京 210096; 2 东南大学软件学院, 南京 210096
Author(s):
Chen Lan1 Jin Yuanping2
1 School of Computer Science and Engineering, Southeast University,Nanjing 210096,China
2 College of Software Engineering, Southeast University, Nanjing 210096,China
关键词:
个性化 排序算法 协同推荐 用户模型
Keywords:
personalization rank algorithm collaborative recommendation user profile
分类号:
TP31
DOI:
10.3969/j.issn.1001-0505.2009.03.007
摘要:
针对目前搜索结果个性化排序算法中的用户兴趣模型构建难、相关度计算不精确等问题,提出了一种结合用户兴趣模型和协同推荐算法的个性化排序方法.该方法从用户的搜索历史,包括提交查询、点击相关网页等反馈信息来训练用户的兴趣模型,然后采用协同推荐算法获取具有共同兴趣的邻居用户,根据这些邻居对网页的推荐程度和网页与用户的相关程度来排序搜索结果.实验结果表明:该排序算法的平均最小精确度比一般排序算法提高了约0.1,且随着用户邻居数目的增长,最小精确度随之增长.与其他排序算法相比,采用协同推荐算法有助于提高网页与用户兴趣关联程度计算的精确度,从而提高排序的效率,有助于改善用户的搜索体验.
Abstract:
To cope with the limitations in current personalized ranking algorithms for Web search results, such as an effective user profile, is difficult to build and relevance computing is not precise, a new personalized rank method based on both user profile and a collaborative recommendation algorithm is proposed. First, user profiles are built from the search history including the queries committed and the pages users clicked, and then the neighbors with similar interests to those of the user are acquired. The resulting pages are re-ranked according to the user’s interests in the pages and the recommendations of the page from the neighborhood. The evaluation experiment results show that the method can increase the MAE(minimum accuracy)by 0.1, and the bigger the size of the neighborhood, the higher the accuracy. Compared with other ranking algorithms, collaborative ranking can improve the relevance precision, providing an improvement in ranking efficiency and user’s search experience.

参考文献/References:

[1] Haveliwala T H.Topic-sensitive pagerank [C] //Proceedings of the 11th International Conference on World Wide Web.Hawaii,USA:ACM Press,2002:517-526.
[2] Tsai Wang-Tien.Building personal ontology to assist Web usage mining-using personalized ranking as an example [D].Taiwan,China:Department of Information Management,Chaoyang University of Technology,2007.
[3] Agichtein E,Brill E,Dumais S,et al.Learning user interaction models for predicting Web search result preferences [C] //Proceedings of the ACM Conference on Research and Development on Information Retrieval(SIGIR).Washington,USA:ACM Press,2006:3-10.
[4] Chidlovskii B,Glance N S,Grasso A.Collaborative re-ranking of search results [C] //Proceedings of AAAI-2000 Workshop on AI for Web Search.Austin,USA,2000:1-5.
[5] Adomavicius G,Tuzhilin A.Towards the next generation of recommender systems:a survey of the state-of-the-art and possible extensions [J].IEEE Trans Knowl Data Eng,2005,17(6):734-749.
[6] Breese J S,Heckerman D,Kadie C.Empirical analysis of predictive algorithms for collaborative filtering [C] //Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence.Madison:Morgan Kaufmann Publisher,1998:43-52.
[7] Deshpande M,Karypis G.Item-based top-n recommendation algorithms [J]. ACM Trans Information Systems,2004,22(1):143-177.
[8] Rohini U,Ambati V.A collaborative filtering based re-ranking strategy for search in digital libraries [C] //Proceedings of 8th ICADL.Bangkok,Thailand,2005:194-203.
[9] Radlinski F,Joachims T.Query chains:learning to rank from implicit feedback [C] //Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining.Chicago,USA,2005:239-248.
[10] Ziegler C N,McNee S M,Konstan J A,et al.Improving recommendation lists through topic diversification[C] //Proceedings of the 14th International Conference on World Wide Web.Chiba,Japan,2005:22-32.
[11] Sarwar B M,Karypis G.Application of dimensionality reduction in recommender systems:a case study[C] //Proceedings of ACM Web KDD Workshop on Web Mining for E-Commerce.New York:ACM Press,2000:114-121.
[12] Dou Z,Song R,Wen J R.A large-scale evaluation and analysis of personalized search strategies[C] //Proceeding of the 16th International Conference on World Wide Web.Banff,Canada:ACM Press,2007:581-590.

备注/Memo

备注/Memo:
作者简介: 陈兰(1985—),女,硕士生; 金远平(联系人),男, 教授,ypjin@seu.edu.cn.
引文格式: 陈兰,金远平.一种基于协同推荐的网页排序算法[J].东南大学学报:自然科学版,2009,39(3):453-458. [doi:10.3969/j.issn.1001-0505.2009.03.007]
更新日期/Last Update: 2009-05-20