[1]余厚云,张为公.基于摄像机模型的运动车辆车道偏离检测[J].东南大学学报(自然科学版),2009,39(5):933-936.[doi:10.3969/j.issn.1001-0505.2009.05.013]
 Yu Houyun,Zhang Weigong.Lane departure detection for moving vehicle based on camera model[J].Journal of Southeast University (Natural Science Edition),2009,39(5):933-936.[doi:10.3969/j.issn.1001-0505.2009.05.013]
点击复制

基于摄像机模型的运动车辆车道偏离检测()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
39
期数:
2009年第5期
页码:
933-936
栏目:
自动化
出版日期:
2009-09-20

文章信息/Info

Title:
Lane departure detection for moving vehicle based on camera model
作者:
余厚云12 张为公1
1 东南大学仪器科学与工程学院, 南京 210096; 2 南京航空航天大学机电学院, 南京 210016
Author(s):
Yu Houyun1 2 Zhang Weigong1
1 School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
2 School of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
关键词:
机器视觉 车道偏离 摄像机模型 车道线
Keywords:
machine vision lane departure camera model lane lines
分类号:
TP212.9
DOI:
10.3969/j.issn.1001-0505.2009.05.013
摘要:
针对车道偏离检测中较难解决的车载摄像机标定问题,从分析摄像机成像模型入手,根据图像中3条或3条以上车道线的消失点位置以及车道线斜率关系,在道路现场调整摄像机安装位置,以实现对摄像机外部参数的直接设定,从而避开了繁琐的摄像机参数标定过程.同时,推导出图像内车道线斜率比与车道偏离程度的简单函数关系,该函数与摄像机内外参数无关.因此,行车过程中只需测量图像中车道线的斜率,即可计算出车辆当前的车道偏离量.现场试验结果表明,在车辆直行时采用该方法测得的车道偏离率与手工实测结果相比,其相对误差小于5%,具备了较高的检测精度.
Abstract:
To solve the calibration problem of camera in lane departure detection, the imaging model is analyzed and the installing position of camera can be adjusted according to the slope and vanishing point of three or more lane lines in the image. At the same time, external parameters of the camera are directly set without complicated calibration. Based on this, the relationship between lane departure and the ratio of lane line’s slope is concluded as a simple function which is unconcerned with the parameters of camera. Therefore, the quantity of lane departure can be calculated so far as this ratio is measured. Actual experiment result demonstrates that the precision of lane departure detection by this method is high, and the relative error is less than 5% compared with manual measurement.

参考文献/References:

[1] Jung Cláudio Rosito,Kelber Christian Roberto.Lane following and lane departure using a linear-parabolic model[J].Image and Vision Computing,2005,23(13):1192-1202.
[2] Lee Joon Woong,Yi Un Kun.A lane-departure identification based on LBPE,hough transform,and linear regression[J]. Computer Vision and Image Understanding,2005,99(3):359-383.
[3] 李旭,张为公.基于视觉的车道偏离报警系统的研究[J].仪器仪表学报,2008,29(7):1554-1558.
  Li Xu,Zhang Weigong.Research on lane departure warning system based on machine vision[J]. Chinese Journal of Scientific Instrument,2008,29(7):1554-1558.(in Chinese)
[4] Lin Chechung,Lin Chiwei,Huang Dauchen,et al.Design a support vector machine-based intelligent system for vehicle driving safety warning[C] //Proceedings of the 11th International IEEE Conference on Intelligent Transportation Systems.Beijing,China,2008:938-943.
[5] Osama Masoud,Nikolaos P Papanikolopoulos.Using geometric primitives to calibrate traffic scenes[C] //Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.Sendai,Japan,2004:1878-1883.
[6] 李旭,张为公.基于视觉的智能车辆横向偏差测量方法[J].东南大学学报:自然科学版,2007,37(1):63-68.
  Li Xu,Zhang Weigong.Measurement method of intelligent vehicle’s lateral deviation error based on vision[J].Journal of Southeast University:Natural Science Edition,2007,37(1):63-68.(in Chinese)
[7] Broggi Alberto,Bertozzi Massimo,Fascioli Alessandra.Self-calibration of a stereo vision system for automotive applications[C] //Proceedings of the 2001 IEEE International Conference on Robotics & Automation.Seoul,Korea,2001:3698-3703.
[8] 李青,郑南宁,张雪涛.用三线法标定车载摄像机的外部参数[J].光电工程,2004,31(8):23-26.
  Li Qing,Zheng Nanning,Zhang Xuetao.Calibration of external parameters of vehicle-mounted camera with trilinear method[J].Opto-Electronic Engineering,2004,31(8):23-26.(in Chinese)
[9] Jeong Seung Gweon,Kim Chang Sup,Yoon Kang Sup,et al.Real-time lane detection for autonomous navigation[C] //Proceedings of the 2001 IEEE International Conference on Intelligent Transportation Systems.Oakland,CA,USA,2001:508-513.
[10] 马颂德,张正友.计算机视觉:计算理论与算法基础[M].北京:科学出版社,1997.

相似文献/References:

[1]李旭,张为公.基于视觉的智能车辆横向偏差测量方法[J].东南大学学报(自然科学版),2007,37(1):45.[doi:10.3969/j.issn.1001-0505.2007.01.011]
 Li Xu,Zhang Weigong.Measurement method of intelligent vehicle’s lateral deviation error based on vision[J].Journal of Southeast University (Natural Science Edition),2007,37(5):45.[doi:10.3969/j.issn.1001-0505.2007.01.011]

备注/Memo

备注/Memo:
作者简介: 余厚云(1975—),男,博士生,讲师; 张为公(联系人),男,博士,教授,博士生导师,zhangwg@seu.edu.cn.
基金项目: 江苏省汽车工程重点实验室开放基金资助项目(QC200603)、江苏省交通科学研究计划资助项目(06C04).
引文格式: 余厚云,张为公.基于摄像机模型的运动车辆车道偏离检测[J].东南大学学报:自然科学版,2009,39(5):933-936. [doi:10.3969/j.issn.1001-0505.2009.05.013]
更新日期/Last Update: 2009-09-20