[1]白志茂,黄高明,徐琴珍,等.基于信息典型相关分析的盲源分离算法[J].东南大学学报(自然科学版),2009,39(6):1093-1097.[doi:10.3969/j.issn.1001-0505.2009.06.002]
 Bai Zhimao,Huang Gaoming,Xu Qinzhen,et al.Blind source separation algorithm based on information canonical correlation analysis[J].Journal of Southeast University (Natural Science Edition),2009,39(6):1093-1097.[doi:10.3969/j.issn.1001-0505.2009.06.002]
点击复制

基于信息典型相关分析的盲源分离算法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
39
期数:
2009年第6期
页码:
1093-1097
栏目:
信息与通信工程
出版日期:
2009-11-20

文章信息/Info

Title:
Blind source separation algorithm based on information canonical correlation analysis
作者:
白志茂13 黄高明2 徐琴珍3 杨绿溪3
1 东南大学公共卫生学院,南京 210009; 2 海军工程大学电子工程学院,武汉 430033; 3 东南大学信息科学与工程学院,南京 210096
Author(s):
Bai Zhimao13 Huang Gaoming2 Xu Qinzhen3 Yang Lüxi3
1 School of Public Health, Southeast University, Nanjing 210009, China
2 College of Electronic Engineering, Naval University of Engineering, Wuhan 430033, China
3 School of Information Science and Engineering, Southeast University, Nanjing 210096, China
关键词:
盲源分离 互信息 信息典型相关分析
Keywords:
blind source separation mutual information information canonical correlation analysis
分类号:
TN911.7
DOI:
10.3969/j.issn.1001-0505.2009.06.002
摘要:
针对盲源分离问题,将互信息理论与典型相关分析理论相结合,提出了一种基于信息典型相关分析的盲源分离算法.该算法首先利用模式搜索法求解,得到混合信号向量的线性组合与混合信号向量延迟的线性组合之间互信息最大的信息典型向量,互信息计算中的概率密度函数由高斯核密度估计.然后,将信息典型向量依次与接收的混合信号数据阵相乘,完成对源信号的逐一抽取和分离.仿真实验结果表明,该算法不仅能有效分离包含超高斯信号成分的混合信号和包含亚高斯信号成分的混合信号,还能分离同时包含这2种成分的混合信号以及病态混合信号.
Abstract:
To solve the problem of blind source separation, a novel algorithm based on information canonical correlation analysis(ICCA)is presented by combining the theory of mutual information with canonical correlation analysis. In this algorithm, the information canonical vectors are searched out by maximizing the mutual information between the linear combination of the observed vectors and the linear combination of the delayed observed vectors. The probability density function is estimated by Gaussian kernel estimates. Then, the source signals are extracted and separated one by one by multiplying the information canonical vectors with the observed mixture. The simulation results show that this algorithm can separate the mixture signals which consist of super-Gaussian components or of sub-Gaussian components. The mixture signals including these two components and the ill mixture signals can also be separated effectively.

参考文献/References:

[1] Jutten C,Herault J.Blind separation of sources,part Ⅰ:an adaptive algorithm based on neuromimetic architecture [J].Signal Processing,1991,24(1):1-10.
[2] Comon P.Independent component analysis—a new concept? [J].Signal Processing,1994,36(3):287-314.
[3] Hyvarinen A.Gaussian moments for noisy independent component analysis[J]. IEEE Letters on Signal Processing,1999,6(6):145-147.
[4] Even J,Saruwatari H,Shikano K.Blind signal extraction via direct mutual information minimization[C] //IEEE Workshop on Machine Learning for Signal Processing.Cancún,Mexico,2008:49-54.
[5] Chien J T,Hsien H L,Furui S.A new mutual information measure for independent component analysis[C] //IEEE International Conference on Acoustics,Speech and Signal Processing.Las Vegas,CA,USA,2008:1817-1820.
[6] Duarte L T,Jutten C.A mutual information minimization approach for a class of nonlinear recurrent separating systems[C] //IEEE Workshop on Machine Learning for Signal Processing.Thessaloniki,Greece,2007:122-127.
[7] 黄高明,杨绿溪,何振亚.基于典范相关分析的时差测向技术研究[J].电路与系统学报,2005,10(5):10-15.
  Huang Gaoming,Yang Lüxi,He Zhenya.Time difference direction finding based on canonical correlation analysis[J]. Journal of Circuits and Systems,2005,10(5):10-15.(in Chinese)
[8] Liu Wei,Mandic D P,Cichocki A.Analysis and online realization of the CCA approach for blind source separation[J]. IEEE Transactions on Neural Networks,2007,18(5):1505-1510.
[9] Via J,Santamaria I,Perez J.Deterministic CCA-based algorithms for blind equalization of FIR-MIMO channels[J].IEEE Transactions on Signal Processing,2007,55(7):3867-3878.
[10] Li Y O,Wang Wei,Adali T,et al.CCA for joint blind source separation of multiple datasets with application to group FMRI analysis[C] //IEEE International Conference on Acoustics,Speech and Signal Processing.Las Vegas,CA,USA,2008:1837-1840.
[11] Yin Xiangrong.Canonical correlation analysis based on information theory[J].Journal of Multivariate Analysis,2004,91(2):161-176.
[12] 陈宝林.最优化理论与算法[M].北京:清华大学出版社,1989:399-400.
[13] Lee T W,Grolami M,Seunowski T J.Independent component analysis using an extended informax algorithm for mixed sub-gaussian and super-gaussian source[J].Neural Cmmputations,1999,11(2):409-433.
[14] Choi S,Cichocki A,Amari S I.Flexible independent component analysis[J].Journal of VLSI signal Processing Systems for Signal,Image,and Video Technology,2000,26(1):25-38.

相似文献/References:

[1]郭洁,沈连丰,宋铁成,等.基于盲源分离的无线视频通信研究与仿真[J].东南大学学报(自然科学版),2007,37(1):13.[doi:10.3969/j.issn.1001-0505.2007.01.004]
 Guo Jie,Shen Lianfeng,Song Tiecheng,et al.Study and simulation of video communication under wireless environment based on blind source separation[J].Journal of Southeast University (Natural Science Edition),2007,37(6):13.[doi:10.3969/j.issn.1001-0505.2007.01.004]
[2]刘薇,周振宇,刘小征,等.一种基于层选择的弥散张量优化算法[J].东南大学学报(自然科学版),2013,43(1):30.[doi:10.3969/j.issn.1001-0505.2013.01.006]
 Liu Wei,Zhou Zhenyu,Liu Xiaozheng,et al.Slice-wise optimization algorithm for diffusion tensor estimation[J].Journal of Southeast University (Natural Science Edition),2013,43(6):30.[doi:10.3969/j.issn.1001-0505.2013.01.006]

备注/Memo

备注/Memo:
作者简介: 白志茂(1972—),男,博士生,讲师; 杨绿溪(联系人),男,博士,教授,博士生导师,lxyang@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(60702029,60672093)、中国博士后科学基金资助项目(20080431379).
引文格式: 白志茂,黄高明,徐琴珍,等.基于信息典型相关分析的盲源分离算法[J].东南大学学报:自然科学版,2009,39(6):1093-1097. [doi:10.3969/j.issn.1001-0505.2009.06.002]
更新日期/Last Update: 2009-11-20