[1]沈虹,何建敏,凡震彬.Opial条件下渐近非扩张型半群殆轨道的遍历定理[J].东南大学学报(自然科学版),2009,39(6):1283-1286.[doi:10.3969/j.issn.1001-0505.2009.06.038]
 Shen Hong,He Jianmin,Fan Zhenbin.Ergodic theorem of almost-orbits for asympotically nonexpansive type semigroups under Opial condition[J].Journal of Southeast University (Natural Science Edition),2009,39(6):1283-1286.[doi:10.3969/j.issn.1001-0505.2009.06.038]
点击复制

Opial条件下渐近非扩张型半群殆轨道的遍历定理()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
39
期数:
2009年第6期
页码:
1283-1286
栏目:
数学、物理学、力学
出版日期:
2009-11-20

文章信息/Info

Title:
Ergodic theorem of almost-orbits for asympotically nonexpansive type semigroups under Opial condition
作者:
沈虹1 何建敏1 凡震彬2
1 东南大学经济管理学院, 南京 210096; 2 常熟理工学院数学系, 常熟 215500
Author(s):
Shen Hong1 He Jianmin1 Fan Zhenbin2
1 School of Economics and Management, Southeast University, Nanjing 210096, China
2 Changshu Institute of Technology, Changshu 215500, China
关键词:
Banach空间 渐近非扩张型半群 τ-收敛 遍历定理
Keywords:
Banach space asympotically nonexpansive type semigroups τ-convergence ergodic theorem
分类号:
O177.91
DOI:
10.3969/j.issn.1001-0505.2009.06.038
摘要:
X是一Banach空间,(X,τ)是局部凸线性拓扑空间,CX上的τ-序列紧凸集,SC上的Γ类渐近非扩张型半群.首先给出了局部一致τ-Opial条件的概念,运用乘积拓扑网技巧得到了具有局部一致τ-Opial条件下空间X的新的收敛条件.然后利用该收敛条件得到了在局部一致τ-Opial条件下的Γ类渐近非扩张型半群殆轨道的遍历定理以及τ-收敛定理.结论是将已有结果由一致τ-Opial条件推广到局部一致τ-Opial条件,对空间X的要求进一步减弱,该结论是遍历定理在非一致凸空间中的延伸.
Abstract:
Let X be a Banach space,(X,τ)be a locally convex linear topological space, C is a τ-sequence compact convex subset of X, and S an asymptotically nonexpansive type semigroups from C onto itself. Under the locally uniform τ-Opial condition, using product topological net, a new convergence condition of X with locally uniform τ-Opial condition is obtained, and give the ergodic theorem and τ-convergence theorem of the almost-orbits for asympotically nonexpansive typesemigroups in Banach space X are given. The conclusion generalizes the previous results under the locally uniform τ-Opial condition, and further weakens the demand of space X. These results are an extension and breakthrough of ergodic theorems in non uniform convex spaces.

参考文献/References:

[1] Baillon J B.Un theoreme de type ergodique les contraction non lineaires dans un espace de Hilbert [J].C R Academy of Sciences,Series A-B,1975,280(1):1511-1514.
[2] Isao M,Kohayasi K.On the asymptotic behavior of almost-orbits of nonlinear contraction semigroups in Banach space [J]. Nonlinear Analysis,Theory,Methods & Applications,1982,6(4):349-365.
[3] Seyit T,Ozlem G.Convergence theorem for I-asymptotically quasi-nonexpansive mapping in Hilbert space [J]. Journal of Mathematical Analysis and Applications,2007,329(1):759-765.
[4] Nishiura K.Asymptotic behavior of almost-orbits of asymptotically nonexpansive semigroups in Banach spaces[J].Journal of Nonlinear and Convex Analysis,2000,1(1):95-105.
[5] Li G,Kim J K.Nonlinear ergodic theorems for commutative semigroups of non-lipschitzian mappings in Banach spaces[J].Houston Journal of Mathematics,2003,29(1):231-246.
[6] Li G,Kim J K.Nonlinear ergodic theorems for general curves defined on general semigroups [J]. Nonlinear Analysis,2003,55(1):1-14.
[7] Lin P K,Tan K K,Xu H K.Demiclosedness principle and asymptotic behavior for asymptotically nonexpansive mappings [J]. Nonlinear Analysis,Theory,Methods & Applications,1995,24(6):929-946.
[8] Day M M.Amenable semigroups [J].Illinois Journal of Mathematics,1957,1(1):547-551.
[9] Bruck R E.On the almost-convergence of iterates of a nonexpansive mapping in Hilbert space and the structure of the weak w-limit set [J].Isreal Journal of Mathematics,1978,29(1):1-17.
[10] 凡震彬,嵇少春,李刚.Banach空间中渐近非扩张型半群殆轨道的遍历定理[J].扬州大学学报:自然科学板,2007,10(3):19-21,24.
  Fan Zhenbin,Ji Shaocun,Li Gang.Ergodic theorem of the almost-orbits for asympotically nonexpansive type semigroups in Banach space [J]. Journal of Yangzhou University:Natural Science Edition,2007,10(3):19-21,24.(in Chinese)

备注/Memo

备注/Memo:
作者简介: 沈虹(1980—),女,博士生; 何建敏(联系人),男,教授,博士生导师,nj.yian@public1.ptt.js.cn.
引文格式: 沈虹,何建敏,凡震彬.Opial条件下渐近非扩张型半群殆轨道的遍历定理[J].东南大学学报:自然科学版,2009,39(6):1283-1286. [doi:10.3969/j.issn.1001-0505.2009.06.038]
更新日期/Last Update: 2009-11-20