[1]林炳,姜明,赵春明.基于二维优化的QC-LDPC码构造方法[J].东南大学学报(自然科学版),2010,40(1):6-10.[doi:10.3969/j.issn.1001-0505.2010.01.002]
 Lin Bing,Jiang Ming,Zhao Chunming.Construction of QC-LDPC codes based on two-dimentional optimization[J].Journal of Southeast University (Natural Science Edition),2010,40(1):6-10.[doi:10.3969/j.issn.1001-0505.2010.01.002]
点击复制

基于二维优化的QC-LDPC码构造方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
40
期数:
2010年第1期
页码:
6-10
栏目:
信息与通信工程
出版日期:
2010-01-20

文章信息/Info

Title:
Construction of QC-LDPC codes based on two-dimentional optimization
作者:
林炳 姜明 赵春明
东南大学移动通信国家重点实验室,南京 210096
Author(s):
Lin Bing Jiang Ming Zhao Chunming
National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China
关键词:
低密度奇偶校验码 准循环 PEG 置换阵
Keywords:
low-density parity-check codes quasi-cyclic progress edge growth permutation matrix
分类号:
TN929.533
DOI:
10.3969/j.issn.1001-0505.2010.01.002
摘要:
研究了基于置换阵的QC-LDPC码圈长分布、ACE分布与对应的基矩阵结构之间的关系.在此基础上,提出在PEG构造框架下,联合优化校验矩阵圈长分布和ACE分布的QC-LDPC码构造方案.该构造方法不是单纯的以消除短圈或增加圈的ACE为目的,而是通过对圈长和ACE设定一个合理的约束关系,将ACE小的短圈尽量排除.由于基矩阵维数较少,新构造方法能够以较低的复杂度优化得到自适应多个扩张系数的基矩阵,从而得到一族不同码长的QC-LDPC码.仿真结果表明,在相同码率和节点度分布的条件下,新构造方法得到的一系列不同长度的码字,在BP算法下的性能都要优于IEEE 802.16e中对应的QC-LDPC码字.
Abstract:
Several important relations are studied between the girth condition and the ACE(approximated cycle extrinsic message degree)spectrum of the QC-LDPC(quasi-cyclic low-density parity-check)codes, where the PCM(parity-check matrices)are defined by the base-matrix and expanded by the cyclic permutation matrices. According to this structure of PCM, a new algorithm for constructing QC-LDPC codes is proposed, which follows the framework of PEG(progress edge growth)algorithm and aims to jointly optimize girth condition and ACE spectrum of LDPC codes. In the proposed algorithm, not only the cycles with short lengths but also the cycles with small ACE values are reduced as far as possible, by setting a reasonable constraint relation to cycle lengths and ACE values. Due to the small dimension of base matrix, our construction can optimize an expansion factors adaptation base-matrix with low complexity and thus a class of QC-LDPC codes with different lengths is obtained. Simulation results show that the LDPC codes constructed by the proposed methodology outperform the QC-LDPC code adopted by IEEE 802.16e with same code length, code rate and degree distribution.

参考文献/References:

[1] Gallager R G.Low density parity check codes [J].IRE Trans Inform Theory,1962,8(1):21-28.
[2] Fossorier M P C.Quasi-cyclic low-density parity-check codes from circulant permutation matrices [J].IEEE Trans Inform Theory,2004,50(8):1788-1793.
[3] Tanner R M,Sridhara D,Sridharan A,et al.LDPC block and convolutional codes based on circulant matrices [J]. IEEE Trans Inform Theory,2004,50(12):2966-2984.
[4] Lan L,Zeng L,Tai Y Y,et al.Construction of quasi-cyclic LDPC codes for AWGN and binary erasure hannels:a finite field approach [J]. IEEE Trans Inform Theory,2007,53(7):2429-2458.
[5] Tian T,Jones C,Villasenor J D,et al.Selective avoidance of cycles in irregular LDPC code construction [J]. IEEE Trans Commun,2004,52(8):1242-1247.
[6] Kang J,Fan P,Cao Z.Flexible construction of irregular partitioned permutation LDPC codes with low error floors [J]. IEEE Commun Letters,2005,9(6):534-536.
[7] Myung S,Yang K.Lifting methods for quasi-cyclic LDPC codes [J].IEEE Commun Letters,2006,10(6):489-491.
[8] Sharon E,Litsyn S.Construction LDPC codes by error minimization progressive edge growth [J].IEEE Trans Commun,2008,56(3):359-368.
[9] Di C,Proietti D,Telatar I E,et al.Finite-length analysis of low-density parity-check codes on the binary erasure channel [J].IEEE Trans Inform Theory,2002,48(6):1570-1579.
[10] Hu X Y,Eleftheriou E,Arnold D M.Progressive edge-growth Tanner graphs [C] //Proc IEEE GLOBECOM.San Antonio,TX,USA,2001:995-1001.
[11] Xiao H,Banihashemi A H.Improved progressive-edge-growth(PEG)construction of irregular LDPC codes [J].IEEE Commun Letters,2004,8(12):715-717.
[12] Vukobratovic D,Djurendic A,Senk V.ACE spectrum of LDPC codes and generalized ACE design [C] //Proc IEEE ICC 2007.Glasgow,Scotland,2007:665-670.
[13] Vukobratovic D,Senk V.Generalized ACE constrained progressive edge growth LDPC code design [J].IEEE Commun Letters,2008,12(1):32-34.

相似文献/References:

[1]姜明,赵春明,刘占利.基于数据打孔混合ARQ方案的低密度奇偶校验码构造方法[J].东南大学学报(自然科学版),2006,36(2):198.[doi:10.3969/j.issn.1001-0505.2006.02.004]
 Jiang Ming,Zhao Chunming,Liu Zhanli.On construction of LDPC codes based on data puncturing hybrid ARQ[J].Journal of Southeast University (Natural Science Edition),2006,36(1):198.[doi:10.3969/j.issn.1001-0505.2006.02.004]

备注/Memo

备注/Memo:
作者简介: 林炳(1984—),男,硕士生; 赵春明(联系人),男,博士,教授,博士生导师,cmzhao@seu.edu.cn.
基金项目: 国家高技术研究发展计划(863计划)资助项目(2006AA01Z263)、东南大学移动通信国家重点实验室自主研究资助项目(2008A10)、高通-东南大学宽带无线传输技术联合研究计划资助项目.
引文格式: 林炳,姜明,赵春明.基于二维优化的QC-LDPC码构造方法[J].东南大学学报:自然科学版,2010,40(1):6-10. [doi:10.3969/j.issn.1001-0505.2010.01.002]
更新日期/Last Update: 2010-01-20