[1]肖芳英,陈汉武.生成量子稳定子码的种子生成器[J].东南大学学报(自然科学版),2010,40(1):52-57.[doi:10.3969/j.issn.1001-0505.2010.01.010]
 Xiao Fangying,Chen Hanwu.Generate seed generators for quantum stabilizer codes[J].Journal of Southeast University (Natural Science Edition),2010,40(1):52-57.[doi:10.3969/j.issn.1001-0505.2010.01.010]
点击复制

生成量子稳定子码的种子生成器()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
40
期数:
2010年第1期
页码:
52-57
栏目:
计算机科学与工程
出版日期:
2010-01-20

文章信息/Info

Title:
Generate seed generators for quantum stabilizer codes
作者:
肖芳英 陈汉武
东南大学计算机科学与工程学院, 南京 210096
Author(s):
Xiao Fangying Chen Hanwu
School of Computer Science and Engineering, Southeast University, Nanjing 210096, China
关键词:
量子纠错码 稳定子 种子生成器 编码电路
Keywords:
quantum error-correcting codes stabilizer seed generators encoding circuit
分类号:
TP387
DOI:
10.3969/j.issn.1001-0505.2010.01.010
摘要:
为了解决生成量子稳定子码的码字时需先找出种子生成器的问题,将寻找种子生成器转化为解线性方程组及线性空间中向量组线性相关和线性无关问题,提出了快速判决法、排序查找法和求解方程组方法来验证找到的算子是否为合法的种子生成器.将稳定子与种子生成器同时标准化可以快速得到量子稳定子码的编码电路.给出了稳定子码种子生成器总数和编码电路所需要的2-qubit和1-qubit门数量.该方法既能用于同时包含Ⅰ型和Ⅱ型生成元的量子稳定子码,又能用于仅含Ⅰ型生成元的量子稳定子码,得到的种子生成器仅含X算子,故编码电路简单.
Abstract:
In order to generate the quantum error-correcting codes based on the stabilizer it is needed to generate seed generator at first. The problem of finding seed generators is transformed into the problems of determining linear independence or linear dependence of vectors and finding the solutions of equation.Quick determinant method, sort and find method and solve equations method are presented to verify the validity of the operators. Through standardizing the generator of the stabilizer and the seed generators at the same time the quantum encoding circuit can be obtained quickly. The total number of seed generators of the stabilizer code and the number of 2-qubit gates and 1-qubit gates needed for the encoding circuit are given. The method introduced in this paper can be applied to the quantum stabilizer code containing both type Ⅰand type Ⅱ generator, and it can also be applied to the quantum stabilizer code containing only type Ⅰ generators. The encoding circuit is simple for the seed generators only contain X operators.

参考文献/References:

[1] Nielsen M A,Chuang L.Quantum computation and quantum information [M].Cambridge,UK:Cambridge University Press,2000.
[2] Shor P.Scheme for reducing decoherence in quantum computer memory [J]. Phys Rev A,1995,52(4):2493-2496.
[3] Salah A A,Klappenecker A,Sarvepalli P K.On quantum and classical BCH codes [J]. IEEE Transactions on Information Theory,2007,53(3):1183-1186.
[4] Ollivier H,Tillich J P.Description of a quantum convolutional code [J].Phys Rev Lett,2003,91(17):1-4.
[5] Djordjevic I B.Quantum LDPC codes from balanced incomplete block designs [J]. IEEE Communications Letters,2008,12(5):389-391.
[6] Gottesman D.Class of quantum error-correcting codes saturating the quantum Hamming bound [J]. Phys Rev A,1996,54(3):1862-1868.
[7] Calderbank A R,Rains E M,Shor P W,et al.Quantum error correction via codes over GF(4)[J]. IEEE Transactions on Information Theory,1998,44(4):1369-1387.
[8] Gottesman D.Stabilizer codes and quantum error correction [D].Pasadena,CA,USA:California Institute of Technology,1997.
[9] Cleve R,Gottesman D.Efficient computations of encodings for quantum error correction [J]. Phys Rev A,1997,56(1):76-82.

备注/Memo

备注/Memo:
作者简介: 肖芳英(1982—),女,博士生; 陈汉武(联系人),男,博士,教授,博士生导师,hw_chen@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(60572071, 60873101)、江苏省自然科学基金资助项目(BK2007104, BK2008209)、东南大学优秀博士论文基金资助项目(YBJJ0820).
引文格式: 肖芳英,陈汉武.生成量子稳定子码的种子生成器[J].东南大学学报:自然科学版,2010,40(1):52-57. [doi:10.3969/j.issn.1001-0505.2010.01.010]
更新日期/Last Update: 2010-01-20