[1]张煜东,吴乐南,李铜川,等.基于PCNN的图像直方图均衡化增强[J].东南大学学报(自然科学版),2010,40(1):64-68.[doi:10.3969/j.issn.1001-0505.2010.01.012]
 Zhang Yudong,Wu Lenan,Li Tongchuan,et al.Image histogram equalization enhancement based on PCNN[J].Journal of Southeast University (Natural Science Edition),2010,40(1):64-68.[doi:10.3969/j.issn.1001-0505.2010.01.012]
点击复制

基于PCNN的图像直方图均衡化增强()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
40
期数:
2010年第1期
页码:
64-68
栏目:
信息与通信工程
出版日期:
2010-01-20

文章信息/Info

Title:
Image histogram equalization enhancement based on PCNN
作者:
张煜东1 吴乐南1 李铜川2 王水花1
1 东南大学信息科学与工程学院, 南京 210096; 2 航天科工集团35所军事代表室, 北京 100013
Author(s):
Zhang Yudong1 Wu Lenan1 Li Tongchuan2 Wang Shuihua1
1 School of Information Science and Engineering,Southeast University,Nanjing 210096,China
2 Military Representative Room of 35th,Institute of China Aerospace Science and Industrial Corporation,Beijing 100013,China
关键词:
图像增强 人类视觉系统 脉冲耦合神经网络
Keywords:
image enhancement human visual system pulse coupled neural network
分类号:
TN911.73
DOI:
10.3969/j.issn.1001-0505.2010.01.012
摘要:
为了更好地增强图像,提出一种新的图像增强方法.处理分为2个阶段,首先局部增强阶段,利用PCNN模拟空间掩盖效应去除了人眼无法察觉的双边缘,同时在神经元模型中引入侧抑制来模拟Mach带效应,使边缘处灰度差值更大,平滑区域灰度差值更小.其次全局增强阶段,将灰度信息与空间信息耦合到神经元的内部活动项,将阈值设置为局部增强后的图像直方图的累加密度函数,通过比较内部活动项与累加密度函数,得到最终的增强图像.理论与实验均证明了最终图像满足直方图均衡化的要求,不仅对灰度层损失问题免疫,而且直方图近似均衡.
Abstract:
In order to enhance images more effectively,a novel enhancement strategy is presented, which is processed by two stages: local enhancement stage and global enhancement stage. In local enhancement stage PCNN(pulse coupled neural network)is used to simulate spatial concealment effect and abnegate the double-edge which is difficult for human eyes to observe.Meantime lateral inhibition is introduced to simulate Mach band effect,which can enlarge the difference of bilateral gray values of edges and can smooth the flat zones. In global enhancement stage, both gray value information and spatial information are coupled into the inner activity item,and the threshold of the corresponding neuron is set as the cumulative density function of the histogram of local enhanced image.Thus through comparing the inner activity item and the cumulative density function,final enhanced image can be attained.Both theory and experiments demonstrate that this method can equalize the given image perfectly,and not only it is immune from traditional gray scale loss problem,but also its histogram is better equalized than traditional methods.

参考文献/References:

[1] 李国友,李惠光,吴惕华.改进的PCNN与Otsu的图像增强方法研究[J].系统仿真学报,2005,17(6):1370-1372.
  Li Guoyou,Li Huiguang,Wu Tihua.Enhancement of image based on Otsu and modified PCNN [J]. Journal of System Simulation,2005,17(6):1370-1372.(in Chinese)
[2] Chang D C,Wu W R.Image contrast enhancement based on a histogram transformation of local standard deviation[J]. IEEE Trans on Medical Imaging,1998,17(4):518-531.
[3] Li T L,Sundarehan M K.Adaptive image contrast enhancement based on human visual properties[J]. IEEE Trans on Medical Imaging,1994,13(4):573-586.
[4] 张懿,刘旭,李海峰.自适应图像直方图均衡算法[J].浙江大学学报:工学版,2007,41(4):630-633.
  Zhang Yi,Liu Xu,Li Haifeng.Self-adaptive image histogram equalization algorithm [J]. Journal of Zhejiang University:Engineering Science,2007,41(4):630-633.(in Chinese)
[5] Zhang Y D,Wu L N.Improved image filter based on SPCNN [J].Science in China E Edition:Information Science,2008,51(12):2115-2125.
[6] 马义德,李廉,王亚馥,等.脉冲耦合神经网络及其应用[M].北京:科学出版社,2006.
[7] 张煜东,吴乐南.基于二维Tsallis熵的改进PCNN图像分割[J].东南大学学报:自然科学版,2008,38(4):579-584.
  Zhang Yudong,Wu Lenan.Image segmentation based on 2D Tsallis entropy with improved pulse coupled neural network [J]. Journal of Southeast University:Natural Science Edition,2008,38(4):579-584.(in Chinese)
[8] Zhang Y D,Wu L N.Pattern recognition via PCNN and Tsallis entropy [J]. Sensors,2008,8(11):7518-7529.

相似文献/References:

[1]骞森,朱剑英.基于奇异值分解的图像质量评价[J].东南大学学报(自然科学版),2006,36(4):643.[doi:10.3969/j.issn.1001-0505.2006.04.032]
 Qian Sen,Zhu Jianying.Image quality measure using singular value decomposition[J].Journal of Southeast University (Natural Science Edition),2006,36(1):643.[doi:10.3969/j.issn.1001-0505.2006.04.032]
[2]李久贤,孙伟,夏良正.一种新的模糊对比度增强算法[J].东南大学学报(自然科学版),2004,34(5):675.[doi:10.3969/j.issn.1001-0505.2004.05.025]
 Li Jiuxian,Sun Wei,Xia Liangzheng.Novel fuzzy contrast enhancement algorithm[J].Journal of Southeast University (Natural Science Edition),2004,34(1):675.[doi:10.3969/j.issn.1001-0505.2004.05.025]
[3]张韵农,何振亚,蔚承建,等.图像增强的自适应免疫算法[J].东南大学学报(自然科学版),2002,32(3):346.[doi:10.3969/j.issn.1001-0505.2002.03.008]
 Zhang Yunnong,He Zhenya,Wei Chengjian,et al.Application of immune algorithm to adaptive image enhancement[J].Journal of Southeast University (Natural Science Edition),2002,32(1):346.[doi:10.3969/j.issn.1001-0505.2002.03.008]
[4]张辉,何振亚.自适应视觉基元图象编码[J].东南大学学报(自然科学版),1993,23(1):1.[doi:10.3969/j.issn.1001-0505.1993.01.001]
 Zhang Hui,He Zhenya.An Adaptive Visual Primitive Coding of Images[J].Journal of Southeast University (Natural Science Edition),1993,23(1):1.[doi:10.3969/j.issn.1001-0505.1993.01.001]

备注/Memo

备注/Memo:
作者简介: 张煜东(1985—),男,博士生; 吴乐南(联系人),男,博士,教授,博士生导师,wuln@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(60872075)、江苏省自然科学基金资助项目(BK2007103)、东南大学优秀博士学位论文基金资助项目(YBJJ0908).
引文格式: 张煜东,吴乐南,李铜川,等.基于PCNN的图像直方图均衡化增强[J].东南大学学报:自然科学版,2010,40(1):64-68.[doi:10.3969/j.issn.1001-0505.2010.01.012]
更新日期/Last Update: 2010-01-20