[1]王静,章世平,孙权森,等.基于MAP估计的遥感图像频域校正超分辨率算法[J].东南大学学报(自然科学版),2010,40(1):84-88.[doi:10.3969/j.issn.1001-0505.2010.01.016]
 Wang Jing,Zhang Shiping,Sun Quansen,et al.MAP based remote sensing image super-resolution with frequency domain correction[J].Journal of Southeast University (Natural Science Edition),2010,40(1):84-88.[doi:10.3969/j.issn.1001-0505.2010.01.016]
点击复制

基于MAP估计的遥感图像频域校正超分辨率算法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
40
期数:
2010年第1期
页码:
84-88
栏目:
图像处理
出版日期:
2010-01-20

文章信息/Info

Title:
MAP based remote sensing image super-resolution with frequency domain correction
作者:
王静 章世平 孙权森 夏德深
南京理工大学计算机科学与技术学院, 南京 210094
Author(s):
Wang Jing Zhang Shiping Sun Quansen Xia Deshen
School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing 210094, China
关键词:
遥感图像 超分辨率复原 马尔科夫随机场 Huber 函数 调制传递函数
Keywords:
remote sensing image super-resolution restoration Markov random field Huber function modulation transfer function
分类号:
TP751
DOI:
10.3969/j.issn.1001-0505.2010.01.016
摘要:
为解决超分辨复原中遥感图像调制传递函数过零点引起的病态问题,提出了一种基于最大后验概率估计,利用遥感系统成像模型对图像进行频域校正的遥感图像超分辨率复原算法. 该算法首先假设图像满足高斯马尔科夫先验模型,使用最大后验概率估计法实现图像频谱外推.然后根据成像模型对外推的频率分量进行频域校正,去除调制传递函数过零点附近的伪信息.最后使用优化最小化方法完成数值求解, 降低了计算复杂度. 实验结果证明,该算法考虑了图像成像模型本身特性,对合成图像和各种地物条件下的遥感图像都能取得快速有效的超分辨复原效果.
Abstract:
To solve the ill-posed problem imported by zero-crossing of modulation transfer function(MTF)in the super-resolution restoration, a novel MRF-MAP(maximum a posteriori)based super-resolution restoration methods with acquisition system modeling based frequency domain correction is proposed. The Huber function is used in a Gaussian Markov random field(GMRF)to operate stable MAP solutions and completes spectral extrapolation. Then a frequency domain correction algorithm is adopted for the geometrical characteristics of the remote sensing system to revise the frequency spectrum above the cut-off frequency. A majorization-minimization approach is used to reduce the computational complexity. Experimental results indicate that by considering the modeling of image acquisition systems the proposed method can achieve high-quality super-resolution image for both composite image and remote sensing images with different physiognomy.

参考文献/References:

[1] 刘妍妍,张新,张建萍.超分辨重建技术及其研究进展[J].中国光学与应用光学,2009,3(4):102-110.
  Liu Yanyan,Zhang Xin,Zhang Jianping.Super-resolved reconstruction technologies and recent evolution[J]. Chinese Journal of Optics and Applied Optics,2009,3(4):102-110.(in Chinese)
[2] Borman S.Topics in multiframe superresolution restoration [D].Notre Dame:University of Notre Dame,2004.
[3] Schultz R R,Stevenson R L.Extraction of high-resolution frames from video sequences[J].IEEE Transactions on Image Processing,1996,5(6):996-1011.
[4] Hardie R C,Barnard K J,Armstrong E E.Joint MAP registration and high resolution image estimation using a sequence of undersampled images[J].IEEE Transactions on Image Processing,1997,6(12):1621-1633.
[5] Dai Shengyang,Han Mei,Xu Wei,et al.SoftCuts:a soft edge smoothness prior for color image super-resolution[J].IEEE Transactions on Image Processing,2009,18(5):969-981.
[6] Ji Hui,Fermuller Cornelia.Robust wavelet-based super-resolution reconstruction:theory and algorithm[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(4):649-660.
[7] Protter Matan,Elad Michael.Super resolution with probabilistic motion estimation[J]. IEEE Transactions on Image Processing,2009,18(8):1899-1904.
[8] Zhang Wei,Cham Wai-Kuen.A single image based blind super-resolution approach [C] //Processing of 2008 IEEE International Conference on Image.San Diego,California,USA,2008:329-332.
[9] Almanasa A,Burand S,Rouge B.Measuring and improving image resolution by adaptation of the reciprocal cell[J]. Journal of Mathematical Imaging and Vision,2004,21(3):235-279.
[10] Schultz R R,Stevenson R L.A Bayesian approach to image expansion for improved definition[J]. IEEE Transactions on Image Processing,1994,3(3):233-242.
[11] 邵文泽,韦志辉.基于广义Huber-MRF图像建模的超分辨率复原算法[J].软件学报,2007,18(10):2434-2444.
  Shao Wenze,Wei Zhihui.Super-resolution reconstruction based on generalized Huber-MRF image modeling[J].Journal of Software,2007,18(10):2434-2444.(in Chinese)
[12] Huber P J. Robust statistics[M].New York:John Wiley and Sons,1981.
[13] Pan Ruimin,Reeves S J.Efficient Huber-Markov edge-preserving image restoration[J].IEEE Transactions on Image Processing,2006,15(12):3728-3735.
[14] Bioucas-Dias J M,Figueired M A T,Oliveira P J.Total variation-based image deconvolution:a majorization-minimization approach [C] //Processing of 2006 IEEE International Conference on Acoustics,Speech and Signal.Toulouse,France,2006,Ⅱ:861-864.
[15] Wang Zhou,Bovik Alan Conrad,Sheikh Hamid Rahim,et al.Image quality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612.

备注/Memo

备注/Memo:
作者简介: 王静(1985—),女,博士生; 夏德深(联系人),男,教授,博士生导师,deshen_x@263.net.
基金项目: 香港特区政府研究资助局资助项目(CUHK/4180/01E)、国家自然科学基金资助项目(60773172).
引文格式: 王静,章世平,孙权森,等.基于MAP估计的遥感图像频域校正超分辨率算法[J].东南大学学报:自然科学版,2010,40(1):84-88. [doi:10.3969/j.issn.1001-0505.2010.01.016]
更新日期/Last Update: 2010-01-20