[1]赵春花,汤文成.精梳机钳板机构参激振动稳定性分析[J].东南大学学报(自然科学版),2010,40(1):101-105.[doi:10.3969/j.issn.1001-0505.2010.01.019]
 Zhao Chunhua,Tang Wencheng.Dynamic stability analysis of nipper mechanism on comber[J].Journal of Southeast University (Natural Science Edition),2010,40(1):101-105.[doi:10.3969/j.issn.1001-0505.2010.01.019]
点击复制

精梳机钳板机构参激振动稳定性分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
40
期数:
2010年第1期
页码:
101-105
栏目:
机械工程
出版日期:
2010-01-20

文章信息/Info

Title:
Dynamic stability analysis of nipper mechanism on comber
作者:
赵春花 汤文成
东南大学机械工程学院, 南京 211189
Author(s):
Zhao Chunhua Tang Wencheng
School of Mechanical Engineering, Southeast University, Nanjing 211189, China
关键词:
钳板机构 Floquent理论 参激振动 参数平面 傅立叶级数
Keywords:
nipper mechanism Floquent theory parametrically excited vibration parameter plane Fourier series methods
分类号:
TH112.5
DOI:
10.3969/j.issn.1001-0505.2010.01.019
摘要:
为了提高钳板机构的运动稳定性,提出了一种新的参数平面,实现了对钳板机构的稳定性分析.首先根据欧拉梁理论建立偏微分运动方程,利用迦辽金法转化偏微分方程为周期变系数常微分方程.其次借助Floquent理论,采用傅立叶级数把周期变系数常微分方程的稳定性问题转变为特征值的求解问题,该方法易于编程实现.提出以构件的长度比、惯性矩比作为构建特征值曲线平面的参数,并通过比较验证了利用该参数平面所得的稳定图更加合理化.最后利用该参数平面分析了钳板机构的稳定性,分析表明,随着速度的提高,不稳定区域越来越宽; 影响钳板机构稳定性的主要原因是机构的前两阶模态,可以通过调整构件的长度比、惯性矩比来提高钳板机构运动稳定性.
Abstract:
Dynamic stability analysis of nipper mechanism on comber is implemented in a parameter plane proposed, in order to improve the motion stability of nipper mechanism. The linearized partial differential equation of motion is derived based on Euler-Bernoulli beam theory, and reduced to a set of coupled Hill’s equations by using Galerkin’s method. Fourier series methods are then applied to obtain the stability boundaries based on Floquent theory by translating the problem into solving eigenvalues. The new parameter plane including the ratio of the length and inertia of the rigid link to the length and inertia of the flexible coupler is constructed and proved to be more reasonable than the parameter plane in literature. Finally,analysis and discussion in dynamic stability of nipper mechanism show that instable regions become wider with speed increasing and the chief factor determining motion stability of nipper mechanism is its first two modes which can be changed by adjusting the ratio of the length and inertia.

参考文献/References:

[1] Hsieh S R,Shaw S W.The dynamic stability and nonlinear resonance of a flexible connecting rod:continuous parameter model [J]. Nonlinear Dynamics,1993,4(6):573-603.
[2] Hsieh S R,Shaw S W.The dynamic stability and nonlinear resonance of a flexible connecting rod:single-mode model [J]. Journal of Sound and Vibration,1994,170(1):25-49.
[3] Lu S Y,Haque I,Lakshmikumaran A.An investigation of the dynamic stability of a slider-crank mechanism with link and drive train flexibility[J]. Journal of Sound and Vibration,1995,182(1):3-22.
[4] Wang Y M.The stability analysis of a slider-crank mechanism due to the existence of two-component parametric resonance[J]. International Journal of Solids and Structures,1999,36(28):4225-4250.
[5] Masurekar V,Gupta K N.Stability analysis of four bar mechanism part I-with the assumption that damping is absent [J]. Mechanism and Machine Theory,1988,23(5):367-375.
[6] Tadibakhsh I G,Younis C J.Dynamic stability of the flexible connecting rod of a slider crank mechanism [J]. Journal of Mechanisms,Transmissions and Automation in Design,1986,108(4):487-496.
[7] Turhan O.Dynamic stability of four-bar and slider-crank mechanisms with elastic coupler [J]. Mechanism and Machine Theory,1995, 30(6):871-882.
[8] Turhan O.Dynamic stability of four-bar and slider-crank mechanisms with viscoelastic(kelvin-voigt model)coupler[J]. Mechanism and Machine Theory,1996, 31(1):77-89.
[9] 应祖光,陈昭晖,倪一清,等.多自由度参激系统稳定性的数值分析[J].计算力学学报,2007,24(5):678-682.
  Ying Zhuguang,Chen Zhaohui,Ni Yiqing,et al.Numerical analysis of the parametrically excited stability of multi-degree-of-freedom systems[J]. Chinese Journal of Computational Mechanics,2007,24(5):678-682.(in Chinese)
[10] Zhang J F,Xub Q Y.Research on stability of periodic elastic motion of a flexible four bar crank rocker mechanism[J]. Journal of Sound and Vibration,2004,274(1/2):39-51.
[11] Yu S D,Cleghorn W L.Dynamic instability analysis of high-speed flexible four-bar mechanisms[J]. Mechanism and Machine Theory,2002,37(11):1261-1285.

备注/Memo

备注/Memo:
作者简介: 赵春花(1982—),女,博士生; 汤文成(联系人),男,博士,教授,博士生导师,tangWC@seu.edu.cn.
基金项目: 江苏省科技成果转化资助项目(BA2004035).
引文格式: 赵春花,汤文成.精梳机钳板机构参激振动稳定性分析[J].东南大学学报:自然科学版,2010,40(1):101-105. [doi:10.3969/j.issn.1001-0505.2010.01.019]
更新日期/Last Update: 2010-01-20