[1]陈耀,冯健.固接抛物线浅拱的平面内稳定性分析[J].东南大学学报(自然科学版),2010,40(1):190-195.[doi:10.3969/j.issn.1001-0505.2010.01.036]
 Chen Yao,Feng Jian.In-plane stability of shallow fixed parabolic arches[J].Journal of Southeast University (Natural Science Edition),2010,40(1):190-195.[doi:10.3969/j.issn.1001-0505.2010.01.036]
点击复制

固接抛物线浅拱的平面内稳定性分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
40
期数:
2010年第1期
页码:
190-195
栏目:
土木工程
出版日期:
2010-01-20

文章信息/Info

Title:
In-plane stability of shallow fixed parabolic arches
作者:
陈耀 冯健
东南大学混凝土及预应力混凝土结构教育部重点实验室,南京 210096; 东南大学江苏省预应力工程技术研究中心,南京 210096
Author(s):
Chen Yao Feng Jian
Key Laboratory of Concrete and Prestressed-Concrete Structures of Ministry of Education, Southeast University, Nanjing 210096, China
Engineering Research Center for Prestress of Jiangsu Province, Southeast University, Nanjing 210096, China
关键词:
抛物线浅拱 阶跃荷载 跃越 动力屈曲 修正长细比
Keywords:
parabolic arch step load snap-through dynamic buckling modified slenderness ratio
分类号:
TU351
DOI:
10.3969/j.issn.1001-0505.2010.01.036
摘要:
对固接抛物线浅拱的静力及动力稳定性问题进行了研究.基于哈密尔顿原理推导出抛物线浅拱的动力学控制方程,并推得非线性静力平衡方程及静力跃越和分岔屈曲的解析方程; 利用体系不稳定平衡时的能量守恒原理确立了发生动力屈曲的临界条件并得到动力屈曲相对荷载上限及下限值.分析结果表明:浅拱的修正长细比及结构已存在荷载是影响浅拱屈曲的重要参数,阶跃荷载作用下浅拱的静力及动力屈曲相对荷载随着长细比的增加而增加,而动力屈曲荷载随结构已存在荷载的增大而减小; 当稳定平衡时系统势能大于零,浅拱的动力屈曲荷载将显著提高.
Abstract:
In-plane static and dynamic buckling of fixed parabolic arches is concerned. The equations of motion are derived from Hamilton’s principle, and the nonlinear equilibrium equations and static buckling equilibrium equations are deduced for shallow parabolic arches. The law of conservation of energy is used along the unstable equilibrium paths to establish the criterion for dynamic buckling of shallow arches, and analytical solutions for the lower and upper dimensionless dynamic buckling loads of arches under the step load are obtained. It is found that modified slenderness ratio and the pre-applied static load are important parameters affecting the buckling of shallow arches, and that the static and dimensionless dynamic buckling loads increase with an increase of modified slenderness ratio. It is also shown that dynamic buckling loads are reduced by raising pre-applied static loads. The dynamic buckling loads will be significantly improved when the system potential energy along the stable equilibrium path are positive.

参考文献/References:

[1] Elias Z M,Chen K L.Nonlinear shallow curved-beam finite element[J].Journal of Engineering Mechanics,1988,114(6):1076-1087.
[2] Wen R K,Suhendro B.Nonlinear curved-beam element for arch structures[J].Structure Engineering,1991,117(11):3496-3515.
[3] 卫星,李俊,李小珍,等.考虑二阶效应的拱结构面内弹性屈曲[J].工程力学,2007,24(1):147-152.
  Wei Xing,Li Jun,Li Xiaozhen,et al.In-plane secondary buckling behavior of elastic arches[J]. Journal of Engineering Mechanics,2007,24(1):147-152.(in Chinese)
[4] Timoshenko S,Gere J M.Theory of elastic stability[M].New York:McGraw-Hill Book Company,1961.
[5] Matsunaga H.In-plane vibration and stability of shallow circular arches subjected to axial forces[J].International Journal of Solids and Structures,1996,33(4):469-482.
[6] Pi Y L,Bradford M A,Uy B.In-plane stability of arches[J].International Journal of Solids and Structures,2002,39(1):105-125.
[7] Pi Y L,Trahair N S.Non-linear buckling and postbuckling of elastic arches[J]. Engineering Structures,1998, 20(7):571-579.
[8] Rubin M B.Bucking of elastic shallow arches using the theory of a Cosserat point[J]. Journal of Engineering Mechanics,2004,130(2):216-224.
[9] 席丰,杨嘉陵,刘振华,等.两端固支复合材料浅拱的动力屈曲分析[J].力学季刊,2000,21(3):337-342.
  Xi Feng,Yang Jialing,Liu Zhenghua,et al.Dynamical buckling analysis of laminated composite clamped shallow arches[J]. Chinese Quarterly of Mechanics,2000,21(3):337-342.(in Chinese)
[10] Pi Y L,Bradford M A.Dynamic buckling of shallow pin-ended arches under a sudden central concentrated load[J].Journal of Sound and Vibration,2008,317(3/4/5):898-917.
[11] Mallona N J,Feya R H B,Nijmeijer H,et al.Dynamic buckling of a shallow arch under shock loading considering the effects of the arch shape[J]. International Journal of Non-Linear Mechanics,2006,41(9):1057- 1067.
[12] 项海帆,刘光栋.拱结构的稳定与振动[M].北京:人民交通出版社,1991.
[13] Moon J,Yoon K Y,Lee T H,et al.In-plane elastic buckling of pin-ended shallow parabolic arches[J]. Engineering Structure,2007,29(10):2611-2617.
[14] Bradford M A,Wang T,Pi Y L,et al.In-plane stability of parabolic arches with horizontal spring supports Ⅰ:theory[J].Journal of Structural Engineering,2007,133(8):1130-1137.
[15] Wang Tao,Bradford M A,Gilbert R I,et al.In-plane stability of parabolic arches with horizontal spring supports.Ⅱ:experiments[J].Journal of Structural Engineering,2007,133(8):1138-1145.

备注/Memo

备注/Memo:
作者简介: 陈耀(1986—),男,博士生; 冯健(联系人),男,博士,教授,博士生导师, fengjian@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(50478075).
引文格式: 陈耀,冯健.固接抛物线浅拱的平面内稳定性分析[J].东南大学学报:自然科学版,2010,40(1):190-195. [doi:10.3969/j.issn.1001-0505.2010.01.036]
更新日期/Last Update: 2010-01-20