[1]陈鑫,杨军,胡晨.一种快速锁定数控锁相环[J].东南大学学报(自然科学版),2010,40(2):258-263.[doi:10.3969/j.issn.1001-0505.2010.02.008]
 Chen Xin,Yang Jun,Hu Chen.A fast-locking digitally controlled phase-locked loop[J].Journal of Southeast University (Natural Science Edition),2010,40(2):258-263.[doi:10.3969/j.issn.1001-0505.2010.02.008]
点击复制

一种快速锁定数控锁相环()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
40
期数:
2010年第2期
页码:
258-263
栏目:
电路与系统
出版日期:
2010-03-20

文章信息/Info

Title:
A fast-locking digitally controlled phase-locked loop
作者:
陈鑫 杨军 胡晨
东南大学国家专用集成电路系统工程技术研究中心, 南京 210096
Author(s):
Chen Xin Yang Jun Hu Chen
National ASIC System Engineering Research Center, Southeast University, Nanjing 210096, China
关键词:
数控锁相环 数控振荡器 快速锁定
Keywords:
digitally controlled phase-locked loop digitally controlled oscillator fast-locking
分类号:
TN402
DOI:
10.3969/j.issn.1001-0505.2010.02.008
摘要:
提出了一种快速锁定数控锁相环结构.该锁相环具有频率捕获模式和相位捕获模式2种工作模式.在频率捕获模式,通过提出的一种新的算法,可以迅速缩小参考时钟和反馈时钟之间的频率差.在相位捕获模式,数控锁相环能够达到更精确的相位锁定.为了验证提出的数控锁相环结构和算法,该数控锁相环电路采用SMIC 0.18 μm logic 1P6M CMOS工艺实现,面积为0.2 mm2,频率范围为48~416 MHz.实测结果表明,数控锁相环只需要2个参考时钟周期就锁定在376 MHz.数控锁相环锁定后功耗为11.394 mW,峰峰值抖动为92 ps,周期抖动为14.49 ps.
Abstract:
A fast-locking digitally controlled phase-locked loop(DCPLL)is proposed. The implemented DCPLL has two operation modes, frequency acquisition mode and phase acquisition mode. In frequency acquisition mode, the frequency error between the reference clock and the feedback clock is reduced rapidly via the proposed algorithm. In phase acquisition mode, the DCPLL achieves a finer phase locking. To verify the proposed algorithm and architecture, the DCPLL design is implemented by SMIC 0.18 μm 1P6M CMOS technology. The core size of the DCPLL is 0.2 mm2. The frequency range of the DCPLL is from 48 to 416 MHz. The measurement results show that the DCPLL can achieve a frequency locking in 2 reference cycles when locking to 376 MHz. The corresponding power, peak-to-peak jitter, cycle jitter are 11.394 mW, 92 ps and 14.49 ps, respectively.

参考文献/References:

[1] Kratyuk Volodymyr,Hanumolu Pavan Kumar,Moon Un-Ku,et al.A design procedure for all-digital phase-locked loops based on a charge-pump phase-locked loop analogy [J]. IEEE Trans Circuits Syst Ⅱ,2007,54(3):247-251.
[2] Lee Joonsuk,Kim Beomsup.A low-noise fast-lock phase-locked loop with adaptive bandwidth control [J].IEEE Journal of Solid-State Circuits,2000,35(8):1137-1145.
[3] Staszewski R B,Wallberg J L,Rezeq S,et al.All-digital PLL and transmitter for mobile phones [J].IEEE Journal of Solid-State Circuits,2005,40(12):2469-2482.
[4] Hsu Chun-Ming,Straayer Matthew Z,Perrott Michael H.A low-noise wide-BW 3.6-GHz digital ΣΔ fractional-N frequency synthesizer with a noise-shaping time-to-digital converter and quantization noise cancellation [J].IEEE Journal of Solid-State Circuits,2008,43(12):2776-2786.
[5] Lee Haechang,Bansal Akash,Frans Yohan,et al.Improving CDR performance via estimation [C] //IEEE ISSCC.San Francisco,CA,USA,2006:1296-1303.
[6] Watanabe T,Yamauchi S.An all-digital PLL for frequency multiplication by 4 to 1022 with seven-cycle lock time [J].IEEE Journal of Solid-State Circuits,2003,38(2):198-204.
[7] Hwang I C,Song S H,Kim S W.A digitally controlled phase-locked loop with a digital phase-frequency detector for fast acquisition [J].IEEE Journal of Solid-State Circuits,2001,36(10):1574-1581.
[8] Chung Ching-Che,Lee Chen-Yi.An all-digital phase-locked loop for high-speed clock generation [J].IEEE Journal of Solid-State Circuits,2003,38(2):347-351.
[9] Chen P L,Chung C C,Yang J N,et al.A clock generator with cascaded dynamic frequency counting loops for wide multiplication range applications [J].IEEE Journal of Solid-State Circuits,2006,41(6):1275-1285.
[10] Olsson T,Nilsson P.A digitally controlled PLL for SoC applications [J]. IEEE Journal of Solid-State Circuits,2004,39(5):751-760.

备注/Memo

备注/Memo:
作者简介: 陈鑫(1982—),男,博士生; 杨军(联系人),男,博士,教授,博士生导师,dragon@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(60676011).
引文格式: 陈鑫,杨军,胡晨.一种快速锁定数控锁相环[J].东南大学学报:自然科学版,2010,40(2):258-263. [doi:10.3969/j.issn.1001-0505.2010.02.008]
更新日期/Last Update: 2010-03-20