[1]黄裕洋,金远平.一种基于余弦因子改进的混合聚类算法[J].东南大学学报(自然科学版),2010,40(3):496-499.[doi:10.3969/j.issn.1001-0505.2010.03.012]
 Huang Yuyang,Jin Yuanping.Hybrid clustering algorithm based on cosine factor improvement[J].Journal of Southeast University (Natural Science Edition),2010,40(3):496-499.[doi:10.3969/j.issn.1001-0505.2010.03.012]
点击复制

一种基于余弦因子改进的混合聚类算法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
40
期数:
2010年第3期
页码:
496-499
栏目:
计算机科学与工程
出版日期:
2010-05-20

文章信息/Info

Title:
Hybrid clustering algorithm based on cosine factor improvement
作者:
黄裕洋 金远平
东南大学计算机科学与工程学院,南京 210096
Author(s):
Huang Yuyang Jin Yuanping
School of Computer Science and Engineering, Southeast University, Nanjing 210096, China
关键词:
混合聚类 遗传算法 K-means算法 余弦因子
Keywords:
hybrid clustering genetic algorithm K-means algorithm cosine factor
分类号:
TP31
DOI:
10.3969/j.issn.1001-0505.2010.03.012
摘要:
为了解决传统的K-means聚类算法全局优化性差,容易陷入局部最优的问题,用具有全局自适应优化特点的遗传算法与K-means算法结合来改善聚类效果.在此基础上提出了基于余弦因子改进的混合聚类算法(SGKM),在交叉和变异操作时用基因余弦因子(GCOS)进行个体控制,确保差的个体不会被引入下一代,并采用交叉和变异概率的自适应控制,结合了K-means算法的高效局部搜索和遗传算法的全局优化能力.实验结果表明,与其他基于K-means算法改进的聚类算法相比,SGKM算法能获得更小的簇内距和更大的簇间距,且数据对象的分类准确率有一定的提高.应用SGKM算法进行聚类不易受到不良个体的干扰,可以有效地改善聚类效果.
Abstract:
To solve the problem of the traditional K-means clustering algorithm’s weakness at global optimization and the problem of its falling into a local optimum easily, a genetic algorithm with the characteristics of being self-adaptive for global optimization is used and combined with a K-means algorithm to improve the results of clustering. On this basis SGKM(senior genetic K-means)hybrid clustering algorithm is proposed which uses a cosine factor to control poor individuals in the crossover and mutation operation to make sure they are not included in the next generation. The SGKM also carries out adaptive control for crossover and mutation probabilities. Thus, it takes advantage of both efficient local search of K-means algorithms and global optimization of genetic algorithms. Experimental results show that compared with other clustering algorithms based on K-means, SGKM can achieve a smaller inner clustering distance and a greater inter clustering distance. Classification accuracy also is improved in this algorithm. The SGKM clustering algorithm can exclude poor individuals well and greatly improve the clustering effect.

参考文献/References:

[1] Krishna K,Murty M N.Genetic K-means algorithm [J]. IEEE Transactions on Systems Man and Cybernetics Part B:Cybernetics,1999,29(3):433-439.
[2] Tang Lixin,Yang Zihou,Wang Mengguang.Improve K-means algorithm of cluster method by GA [J].Mathematical Statistics and Applied Probability,1997,12(4):350-356.
[3] Bandyopadhyay S,Maulik U.Genetic algorithm-based clustering technique [J]. Pattern Recognition,2000,33(9):1455-1465.
[4] Laszlo M,Mukherjee S.A genetic algorithm that exchanges neighboring centers for K-means algorithm [J].Pattern Recognition,2007,28(16):2359-2366.
[5] Chang Dongxia,Zhang Xianda,Zheng Changwen.A genetic algorithm with gene rearrangement for K-means clustering [J].Pattern Recognition,2009,42(7):1210-1222.
[6] Yang Shanlin,Li Yongshen.K-means optimization study on k value of K-means algorithm [J].System Engineering Theory and Application,2006,2(5):97-101.
[7] Pakhiraa M K,Bandyopadhyayb S,Maulikc U.Validity index for crisp and fuzzy clusters [J].Pattern Recognition,2004,37(3):487-501.
[8] Guo Haixiang,Zhu Kejun,Gao Siwei,et al.An improved genetic K-means algorithm for optimal clustering [C] //Proceedings of the Sixth IEEE International Conference on Data Mining.Hong Kong,China,2006:793-797.
[9] Camastra F,Verri A.A novel kernel method for clustering [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(5):801-804.
[10] Lu Yi,Lu Shiyong,Fotouhi F.FGKA:a fast genetic K-means clustering algorithm [C] //ACM Symposium on Applied Computing.Nicosia,Cyprus,2004:622-623.
[11] Chavent M,Lechevallier Y,Briant O.A monothetic divisive hierarchial clustering method [J].Computational Statistics & Data Analysis,2007,52(2):687-701.
[12] Yao Zhong,Zhang Quang.Item-based clustering collaborative filtering algorithm under high-dimensional sparse data[C] //International Joint Conference on Computational Sciences and Optimization.Sanya,China,2009:787-790.

相似文献/References:

[1]涂青,徐赵东,彭军.隔减震结构中黏弹性阻尼装置的遗传算法优化分析[J].东南大学学报(自然科学版),2009,39(1):73.[doi:10.3969/j.issn.1001-0505.2009.01.014]
 Tu Qing,Xu Zhaodong,Peng Jun.Parametric optimization of viscoelastic device in earthquake isolation and mitigation of structures[J].Journal of Southeast University (Natural Science Edition),2009,39(3):73.[doi:10.3969/j.issn.1001-0505.2009.01.014]
[2]周建新,司风琪,仇晓智,等.基于SVR和GA的锅炉运行氧量基准值的优化确定[J].东南大学学报(自然科学版),2008,38(6):1061.[doi:10.3969/j.issn.1001-0505.2008.06.024]
 Zhou Jianxin,Si Fengqi,Qiu Xiaozhi,et al.Optimization of boiler operation oxygen content based on support vector regression and genetic algorithms[J].Journal of Southeast University (Natural Science Edition),2008,38(3):1061.[doi:10.3969/j.issn.1001-0505.2008.06.024]
[3]曹源,汪凤泉,桂益俊.基于遗传算法的冲击信号拟合[J].东南大学学报(自然科学版),2007,37(2):320.[doi:10.3969/j.issn.1001-0505.2007.02.027]
 Cao Yuan,Wang Fengquan,Gui Yijun.Research of shock signal curve fit based on genetic algorithm[J].Journal of Southeast University (Natural Science Edition),2007,37(3):320.[doi:10.3969/j.issn.1001-0505.2007.02.027]
[4]刘宁,刘怀,费树岷.网络控制系统中任务与信息的优化调度[J].东南大学学报(自然科学版),2007,37(4):605.[doi:10.3969/j.issn.1001-0505.2007.04.012]
 Liu Ning,Liu Huai,Fei Shumin.Optimal task and message scheduling for networked control systems[J].Journal of Southeast University (Natural Science Edition),2007,37(3):605.[doi:10.3969/j.issn.1001-0505.2007.04.012]
[5]洪伟.计算电磁学研究进展[J].东南大学学报(自然科学版),2002,32(3):335.[doi:10.3969/j.issn.1001-0505.2002.03.006]
 Hong Wei.Progress in computational electromagnetics[J].Journal of Southeast University (Natural Science Edition),2002,32(3):335.[doi:10.3969/j.issn.1001-0505.2002.03.006]
[6]叶在福,单渊达.计及非定量不确定性的多种群遗传电网扩展规划[J].东南大学学报(自然科学版),2000,30(2):116.[doi:10.3969/j.issn.1001-0505.2000.02.025]
 Ye Zaifu,Shan Yuanda.A New Transmission Network Expansion Planning Using Improved Multiple-Population Genetic Algorithm[J].Journal of Southeast University (Natural Science Edition),2000,30(3):116.[doi:10.3969/j.issn.1001-0505.2000.02.025]
[7]高山,单渊达.遗传算法在机组启停中的应用及改进[J].东南大学学报(自然科学版),2000,30(3):51.[doi:10.3969/j.issn.1001-0505.2000.03.011]
 Gao Shan,Shan Yuanda.Advanced Genetic Algorithm Approach to Unit Commitment[J].Journal of Southeast University (Natural Science Edition),2000,30(3):51.[doi:10.3969/j.issn.1001-0505.2000.03.011]
[8]谈烨,仲伟俊,徐南荣.基于遗传算法的一类资源分配两层规划问题求解[J].东南大学学报(自然科学版),1999,29(4):12.[doi:10.3969/j.issn.1001-0505.1999.04.003]
 Tan Ye,Zhong Weijun,Xu Nanrong.A Genetic Algorithm Based Method for a Class of Resource Allocation Bilevel Programming Problems[J].Journal of Southeast University (Natural Science Edition),1999,29(3):12.[doi:10.3969/j.issn.1001-0505.1999.04.003]
[9]徐欧,杨非,孙忠良.亚毫米波对角喇叭天线的GA优化设计及其性能测试[J].东南大学学报(自然科学版),2010,40(6):1134.[doi:10.3969/j.issn.1001-0505.2010.06.002]
 Xu Ou,Yang Fei,Sun Zhongliang.Genetic algorithm design and measurement of sub-millimeter wave diagonal horn[J].Journal of Southeast University (Natural Science Edition),2010,40(3):1134.[doi:10.3969/j.issn.1001-0505.2010.06.002]
[10]张杰,马浩,吴镇扬.基于遗传算法的零极点型与头相关传递函数优化逼近[J].东南大学学报(自然科学版),2006,36(1):19.[doi:10.3969/j.issn.1001-0505.2006.01.004]
 Zhang Jie,Ma Hao,Wu Zhenyang.Optimal approximation of head-related transfer function’s zero-pole model based on genetic algorithm[J].Journal of Southeast University (Natural Science Edition),2006,36(3):19.[doi:10.3969/j.issn.1001-0505.2006.01.004]

备注/Memo

备注/Memo:
作者简介: 黄裕洋(1986—),男,硕士生; 金远平(联系人),男,教授,ypjin@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(60973023).
引文格式: 黄裕洋,金远平.一种基于余弦因子改进的混合聚类算法[J].东南大学学报:自然科学版,2010,40(3):496-499. [doi:10.3969/j.issn.1001-0505.2010.03.012]
更新日期/Last Update: 2010-05-20