[1]刘腾腾,倪巍伟,崇志宏,等.多维数值敏感属性隐私保护数据发布方法[J].东南大学学报(自然科学版),2010,40(4):699-703.[doi:10.3969/j.issn.1001-0505.2010.04.007]
 Liu Tengteng,Ni Weiwei,Chong Zhihong,et al.Privacy-preserving data publishing methods for multiple numerical sensitive attributes[J].Journal of Southeast University (Natural Science Edition),2010,40(4):699-703.[doi:10.3969/j.issn.1001-0505.2010.04.007]
点击复制

多维数值敏感属性隐私保护数据发布方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
40
期数:
2010年第4期
页码:
699-703
栏目:
计算机科学与工程
出版日期:
2010-07-20

文章信息/Info

Title:
Privacy-preserving data publishing methods for multiple numerical sensitive attributes
作者:
刘腾腾 倪巍伟 崇志宏 张勇
东南大学计算机科学与工程学院, 南京 210096
Author(s):
Liu Tengteng Ni Weiwei Chong Zhihong Zhang Yong
School of Computer Science and Engineering, Southeast University, Nanjing 210096, China
关键词:
隐私保护 多敏感属性 数值型数据 数据发布
Keywords:
privacy preserving multiple sensitive attributes numerical data data publishing
分类号:
TP311
DOI:
10.3969/j.issn.1001-0505.2010.04.007
摘要:
为避免多维数值敏感属性数据发布中的近似猜测攻击,基于分解思想提出了一种有效的数据发布方法(l-MNSA).首先通过按敏感属性值均匀间隔分组的方法,提出针对单维数值敏感属性的l-SNSA算法; 然后提出最小距离的思想,通过将敏感属性统一化并按最小距离均匀间隔分组,提出适用于多维数值敏感属性的l-MNSA算法.与以往仅针对单敏感属性的发布算法相比,该算法同时能对多维敏感属性提供较好的保护.实验结果表明,采用l-MNSA算法发布的数据,其组内最小差异与l-SNSA算法针对各维属性分别发布的结果相比,平均降低10%左右,算法时间复杂度仍为O(nlgn).该算法可以较好地均衡发布数据的安全性和可用性,是有效可行的.
Abstract:
Proximity breach is a privacy threat specific to numerical sensitive attributes in data publication. This paper tries to remedy the problem by introducing a novel principle called l-MNSA(l-multi numerical sensitive attribute)approach based on the idea of lossy join. Firstly, a data publishing algorithm concentrating on tables with only one numerical sensitive attribute, i.e. l-SNSA(l-single numerical sensitive attribute)algorithm, is proposed, in which the sensitive attribute is grouped by their values. Then, the idea of shortest distance is suggested. By unifying the sensitive attributes value and grouping them by their shortest distance, l-MNSA algorithm is proposed. Compared with previous algorithm for single sensitive attribute, l-MNSA can provide better protection to the multi numerical sensitive attributes. The results show that the minimum difference of data published by l-MNSA is reduced by 10% compasing to that of l-SNSA, meanwhile, the time complexity is O(nlgn). The l-MNSA can better balance the published data’s security and availability, being feasible and effective.

参考文献/References:

[1] Sweeney L.K-anonymity:a model for protecting privacy[J].International Journal on Uncertainty,Fuzziness,and Knowledge-Based Systems,2002,10(5):557-570.
[2] Samarati P.Protecting respondents’ identities in microdata release[J].IEEE Transactions on Knowledge and Data Engineering,2001,13(6):1010-1027.
[3] Li N,Li T.T-closeness:privacy beyond k-anonymity and l-diversity[C] //Proceedings of the 23rd International Conference on Data Engineering. Istanbul,Turkey,2007:106-115.
[4] Machanavajjhala A,Gehrke J,Kefer D.l-diversity:privacy beyond k-anonymity [C] //Proceedings of the 22nd International Conference on Data Engineering.Atlanta,Georgia,USA,2006:24-35.
[5] Zhang Q,Koudas N,Srivastava D,et al.Aggregate query answering on anonymized tables[C] //Proceedings of International Conference on Data Engineering.Istanbul,Turkey,2007:116-125.
[6] Xiao X,Tao Y.Anatomy:simple and effective privacy preservation[C] //Proceedings of the 32nd International Conference on Very Large Data Bases.Seoul,Korea,2006:139-150.
[7] Li J X,Tao Y F,Xiao X K.Preservation of proximity privacy in publishing numerical sensitive data[C] //Proceedings of ACM Conference on Management of Data.Vancouver,BC,Canada,2008:473-486.
[8] 杨晓春,王雅哲,王斌,等.数据发布中面向多敏感属性的隐私保护方法[J].计算机学报,2008,31(4):574-587.
  Yang Xiaochun,Wang Yazhe,Wang Bin,et al.Privacy preserving approaches for multiple sensitive attributes in data publishing[J].Chinese Journal of Computers,2008,31(4):574-587.(in Chinese)
[9] 周水康,李丰,陶宇飞,等.面向数据库应用的隐私保护研究综述[J].计算机学报,2009,32(5):847-861.
  Zhou Shuikang,Li Feng,Tao Yufei,et al.Privacy preservation in database applications:a survey[J].Chinese Journal of Computers,2009,32(5):847-861.(in Chinese)
[10] Aggarwal C.On k-anonymity and the curse of dimensionality[C] //Proceedings of the 31st International Conference on Very Large Data Bases.Trondheim,Norway,2005:901-909.

相似文献/References:

[1]高枫,何泾沙,马书南.数据共享应用中的隐私保护方法[J].东南大学学报(自然科学版),2011,41(2):233.[doi:10.3969/j.issn.1001-0505.2011.02.004]
 Gao Feng,He Jingsha,Ma Shunan.Privacy preserving in data sharing applications[J].Journal of Southeast University (Natural Science Edition),2011,41(4):233.[doi:10.3969/j.issn.1001-0505.2011.02.004]

备注/Memo

备注/Memo:
作者简介: 刘腾腾(1987—),男,硕士生; 倪巍伟(联系人),男,博士,副教授,wni@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(60973023)、江苏省自然科学基金资助项目(BK2006095).
引文格式: 刘腾腾,倪巍伟,崇志宏,等.多维数值敏感属性隐私保护数据发布方法[J].东南大学学报:自然科学版,2010,40(4):699-703. [doi:10.3969/j.issn.1001-0505.2010.04.007]
更新日期/Last Update: 2010-07-20