[1]柯福阳,王庆,潘树国.自动积分步长的GLONASS卫星轨道龙格库塔积分法[J].东南大学学报(自然科学版),2010,40(4):755-759.[doi:10.3969/j.issn.1001-0505.2010.04.018]
 Ke Fuyang,Wang Qing,Pan Shuguo.GLONASS orbit Runge-Kutta integral algorithm by automatic integral step length[J].Journal of Southeast University (Natural Science Edition),2010,40(4):755-759.[doi:10.3969/j.issn.1001-0505.2010.04.018]
点击复制

自动积分步长的GLONASS卫星轨道龙格库塔积分法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
40
期数:
2010年第4期
页码:
755-759
栏目:
其他
出版日期:
2010-07-20

文章信息/Info

Title:
GLONASS orbit Runge-Kutta integral algorithm by automatic integral step length
作者:
柯福阳12 王庆2 潘树国2
1 南京信息工程大学遥感学院, 南京 210044; 2 东南大学仪器科学与工程学院,南京 210096
Author(s):
Ke Fuyang12 Wang Qing2 Pan Shuguo2
1 School of Remote Sensing, Nanjing University of Information Science and Technology, Nanjing 210044, China
2 School of Instrument of Science and Engineering, Southeast University, Nanjing 210096, China
关键词:
GLONASS 卫星坐标 状态方程 积分步长 龙格-库塔
Keywords:
global navigation satellite system satellite coordinate estate equation integral step length Runge-Kutta
分类号:
V557.1
DOI:
10.3969/j.issn.1001-0505.2010.04.018
摘要:
为了快速准确地计算GLONASS卫星坐标,通过对不同的卫星状态方程进行比较分析,给出一个准确的GLONASS卫星运动状态方程.以该状态方程为基础,提出了古典形式、龙格-库塔、基尔公式3种不同形式的龙格-库塔轨道积分方法,比较分析得出3种积分方法精度相当,但基尔公式的舍入误差较小.然后,以基尔公式为基础,给出了定步长和自动选择步长2种不同的积分方法的详细步骤.讨论了定步长的选择以及自动选择步长收敛值的取值,得到其最佳值在20~30之间.最后,利用GLONASS的广播星历对基于基尔公式的自动选择积分步长的龙格-库塔法进行精度分析,积分时间间隔为60min,积分误差小于3m.
Abstract:
In order to fix GLONASS(global navigation satellite system)satellites coordinate quickly and accurately, a correct GLONASS estate equation is given through comparing and analyzing different equations from different references. Then, different integral algorithm based on classical form, Runge-Kutta and Gill equation are put forward and compared. The accuracy of these methods are about the same but the rounding error of Gill is less. Detailed steps of Runge-Kutta based on Gill with fixed and automatic step length are introduced. The selection of fixed step length and convergence value of automatic step are discussed. The best convergence value is between 20 and 30. At last, the accuracy of GLONASS orbit Runge-Kutta integral algorithm by automatic step length based on Gill is analyzed using GLONASS broadcast navigation data. The integral error is less than 3m when integral time interval is 60 min.

参考文献/References:

[1] Alexei E Zinoviev.Using GLONASS in combined GNSS receivers:current status [C] //ION GNSS 18th International Technical Meeting of the Satellite Division.Long Beach,CA,USA,2005:1046-1057.
[2] Landau Herbert,Chen Xiaoming,Kipka Adrian,et al.Latest developments in network RTK modeling to support GNSS modernization [J].Journal of Global Positioning Systems,2007,16(1):47-55.
[3] Bruyninx Carine.Comparing GPS-only with GPS+GLONASS positioning in a regional permanent GNSS network [J].GPS Solutions,2007,11(2):97-106.
[4] 徐绍铨,张华海,杨志强,等.GPS测量原理及应用[M].武汉:武汉大学出版社,2006.
[5] ICD-GLONASS.GLONASS interface control document version 5.0,ICD2002E[R].Moscow:Coordination Scientific Information Center,2002.
[6] Stewart Mike,Tsakiri Maria.GLONASS broadcast orbit computation [J].GPS Solutions,1998,2(2):16-27.
[7] 葛茂荣,过静珺,葛胜杰.GLONASS卫星坐标的计算方法[J].测绘通报,1999(2):2-4.
  Ge Maorong,Guo Jingjun,Ge Shengjie.GLONASS satellite coordinate computing method [J].Bulletin of Surveying and Mapping, 1999(2):2-4.(in Chinese)
[8] 杨剑,王泽民,孟泱,等.GLONASS卫星轨道积分算法分析[J].武汉大学学报:信息科学版,2006,31(7):613-615.
  Yang Jian,Wang Zemin,Meng Yang,et al.On integral methods of GLONASS satellite orbit [J].Geomatics and Information Science of Wuhan University,2006,31(7):613-615.(in Chinese)
[9] 葛奎,王解先.GLONASS卫星位置计算与程序实现[J].测绘与空间地理信息,2009,32(2):137-140.
  Ge Kui,Wang Jiexian.Calculation of GLONASS satellite station and the realization of program [J].Geomatics & Spatial Information Technology,2009,32(2):137-140.(in Chinese)
[10] 徐士良.C常用算法程序集[M].北京:清华大学出版社,1996:241-245.

备注/Memo

备注/Memo:
作者简介: 柯福阳(1981—),男,博士生; 王庆(联系人),男,博士,教授,博士生导师,w3398@263.net.
基金项目: “十一五”国家科技支撑计划重点资助项目(2008BAJ11B05,2008BAJ11B01).
引文格式: 柯福阳,王庆,潘树国.自动积分步长的GLONASS卫星轨道龙格库塔积分法[J].东南大学学报:自然科学版,2010,40(4):755-759. [doi:10.3969/j.issn.1001-0505.2010.04.018]
更新日期/Last Update: 2010-07-20