[1]王秋颖,顾璠.DBD固体燃料液化多相介质作用机理分析[J].东南大学学报(自然科学版),2010,40(4):800-804.[doi:10.3969/j.issn.1001-0505.2010.04.026]
 Wang Qiuying,Gu Fan.Mechanism analysis of multiphase mediums interaction of solid fuels liquefaction by dielectric barrier discharge plasma[J].Journal of Southeast University (Natural Science Edition),2010,40(4):800-804.[doi:10.3969/j.issn.1001-0505.2010.04.026]
点击复制

DBD固体燃料液化多相介质作用机理分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
40
期数:
2010年第4期
页码:
800-804
栏目:
电气工程
出版日期:
2010-07-20

文章信息/Info

Title:
Mechanism analysis of multiphase mediums interaction of solid fuels liquefaction by dielectric barrier discharge plasma
作者:
王秋颖 顾璠
东南大学能源与环境学院, 南京 210096
Author(s):
Wang Qiuying Gu Fan
School of Energy and Environment, Southeast University, Nanjing 210096, China
关键词:
DBD 等离子体鞘层 数值模拟 多相作用 固体燃料液化
Keywords:
dielectric barrier discharge plasma sheath numerical simulation multiphase medium interaction solid fuels liquefaction
分类号:
TM213;TM89
DOI:
10.3969/j.issn.1001-0505.2010.04.026
摘要:
针对介质阻挡放电(DBD)条件下的多相介质作用问题,从等离子体鞘层的特性分析着手,采用流体动力学方法,通过对一维鞘层的时空演化过程进行数值模拟,获得等离子体鞘层中离子速度、离子浓度、电子浓度、电位等参数的分布特性.数值模拟结果显示,在一定的电压下,粒子的速度是一定的; 放电电压越高,粒子的速度越大,对应的能量越高.与固体燃料液化实验相对比,DBD放电可以提供气液固三相状态转变所需要的能量.根据不同反应的能量需求,通过控制放电电压,可以控制反应的进程,定制反应生成的产物,为DBD固体燃料液化实验提供理论依据.等离子体鞘层特性研究为分析DBD条件下的三相物质相互作用架起了桥梁,是分析DBD多相介质作用机理的一种有效的途径.
Abstract:
In order to comprehensively understand the mechanism of multiphase medium interaction by dielectric barrier discharge(DBD), the temporal and spatial evolution of transient sheath expansion around planar targets was simulated numerically with a one-dimensional fluid model. The character of the parameters including ions velocity, ions density, electrons density and voltage in the sheath were acquired. The simulation results show that the velocity of particles keeps definite in certain voltage. Higher discharge voltage leads to bigger particle velocity or greater particle energy, which would be sufficient for solid fuels liquefaction. According to the needed energy of different reactions, the process and the products of reactions could be predicted and designed by controlling the discharge voltage. The analyses of plasma sheath provide theoretical evidence for DBD coal liquefaction experiment. It bridges over 3-phases mediums and provides an effective way for studying multiphase interaction in DBD condition.

参考文献/References:

[1] Li J H,Ke R,Li W,et al.Mechanism of selective catalytic reduction of NO over Ag/Al2O3with the aid of non-thermal plasma [J].Catalysis Today, 2008,139(1/2):49-58.
[2] Kwak J H,Peden C H F,Szanyi J.Non-thermal plasma-assisted NOx reduction over Na-Y zeolites:the promotional effect of acid sites [J].Catalysis Letters,2006,109(1/2):1-6.
[3] Lu B,Zhang X,Yu X,et al.Catalytic oxidation of benzene using DBD corona discharges [J].J Hazard Mater,2006,137(1):633-637.
[4] Zhu T,Li J,Jin Y,et al.Gaseous phase benzene decomposition by non-thermal plasma coupled with nano-titania catalyst [J]. International Journal of Environmental Science and Technology,2009,6(1):141-148.
[5] Luche J,Aubry O,Khacef A,et al.Syngas production from methane oxidation using a non-thermal plasma:experiments and kinetic modeling [J].Chemical Engineering Journal,2009,149(1/2/3):35-41.
[6] 王秋颖,魏燕丽,李婷婷,等.液固DBD等离子体煤液化反应动力学分析[J].工程热物理学报,2008,29(5):897-899.
  Wang Qiuying,Wei Yanli,Li Tingting,et al.Kinetic analysis of liquid-solid reaction in DBD plasma coal liquefaction [J]. Journal of Engineering Thermophysics,2008,29(5):897-899.(in Chinese)
[7] Yea Z L,Zhang Y N,Li P,et al.Feasibility of destruction of gaseous benzene with dielectric barrier discharge [J]. Journal of Hazardous Materials,2008,156(1/2/3):356-364.
[8] Ognier S,Iya-sou D,Fourmond C,et al.Analysis of mechanisms at the plasma-liquid interface in a gas-liquid discharge reactor used for treatment of polluted water [J]. Plasma Chem Plasma Process,2009,29(4):261-273.
[9] Zhang R B,Wu Y,Li G F.Enhancement of the plasma chemistry process in a three phase discharge reactor [J]. Plasma Sources Science and Technology,2005,14(2):308-313.
[10] Lieberman M A.Model of plasma immersion ion implantation [J].J Appl Phys,1989,66(7):2926-2929.
[11] Emmert G A,Henry M A.Numerical simulation of plasma sheath expansion,with applications to plasma source ion implantation [J].J Appl Phys,1992,71(1):113-117.
[12] Liu C S,Wang D Z.Monte Carlo simulation of ions inside a cylindrical bore for plasma source ion implantation [J].J Appl Phys,2002,91(1):32-35.
[13] Kwok D T K,Fu R K Y,Chu P K.Two dimensional particle-in-cell plasma immersion ion implantation simulation of gear/windmill geometry in cylindrical co-ordinates along the plane [J]. Surface & Coatings Technology,2002, 156(1/2/3):97-102.

备注/Memo

备注/Memo:
作者简介: 王秋颖(1971—),女,博士,副教授, wangqiuying@seu.edu.cn.
基金项目: 高等学校博士学科点专项科研基金资助项目(20070286099).
引文格式: 王秋颖,顾璠.DBD固体燃料液化多相介质作用机理分析[J].东南大学学报:自然科学版,2010,40(4):800-804. [doi:10.3969/j.issn.1001-0505.2010.04.026]
更新日期/Last Update: 2010-07-20