[1]郭孜政,陈崇双,王欣,等.基于证据理论的驾驶行为险态识别方法[J].东南大学学报(自然科学版),2010,40(4):866-870.[doi:10.3969/j.issn.1001-0505.2010.04.038]
 Guo Zhizheng,Chen Chongshuang,Wang Xin,et al.Identification of risk states in driving behavior based on evidence theory[J].Journal of Southeast University (Natural Science Edition),2010,40(4):866-870.[doi:10.3969/j.issn.1001-0505.2010.04.038]
点击复制

基于证据理论的驾驶行为险态识别方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
40
期数:
2010年第4期
页码:
866-870
栏目:
交通运输工程
出版日期:
2010-07-20

文章信息/Info

Title:
Identification of risk states in driving behavior based on evidence theory
作者:
郭孜政1 陈崇双1 王欣2 刘玉增3 谭永刚1
1 西南交通大学交通运输学院,成都 610031; 2 中国民航飞行学院计算机学院,广汉 618307; 3 四川警察学院交通管理系,泸州 646000
Author(s):
Guo Zhizheng1 Chen Chongshuang1 Wang Xin2 Liu Yuzeng3 Tan Yonggang1
1 College of Traffic and Transportation, Southwest Jiaotong University, Chengdu 610031, China
2 School of Computer Science, Civil Aviation Flight University of China, Guanghan 618307, China
3 Department of Traffic Management, Sichuan Police College, Luzhou 646000, China
关键词:
交通安全 驾驶行为 险态辨识 D-S证据理论
Keywords:
traffic safety driving behavior risk states identification D-S evidence theory
分类号:
U491
DOI:
10.3969/j.issn.1001-0505.2010.04.038
摘要:
针对驾驶过程中危险性驾驶行为状态的有效辨识问题,基于证据理论提出一套系统的驾驶行为险态辨识方法.在设定的显著性水平下,采用因子方差分析法,从驾驶行为状态因子中提取若干因子构建驾驶行为险态辨识特征集.在此基础上,分别采用贝叶斯模型、FCM模型、神经网络模型,构建3类驾驶行为险态辨识器,实现驾驶行为危险状态辨识.针对3类辨识器辨识结果的差异性,采用D-S证据理论,对3类模型的辨识结果予以融合,实现了驾驶行为状态危险等级的融合识别.最后结合实例予以试算,结果表明,对于危险性驾驶行为状态的误判率为1.73%,方法具有可行性.
Abstract:
In order to effectively identify the dangerous driving behavior status in driving process, a systematic approach about driving behavior state identification is proposed based on evidence theory. After setting the significance level, a number of factors are extracted using factor analysis method, to construct dangerous driving state recognition feature set. On this basis, Bayesian models, FCM(fuzzy C-means)models and neural network model are used to construct three types of dangerous state identifier to identify dangerous driving behavior statues. Since the results of the three identifiers are different, a D-S evidence theory is adapted to fuse the three so that the integration of driving risk level is realized. Practical example test results show that the misjudgment rate of dangerous driving behavior status is 1.73% which proves the feasibility of the approach.

参考文献/References:

[1] 张殿业.道路交通事故与黑点分析[M].北京:人民交通出版社,2003.
[2] 陈斌,魏庆曜,金炜东.道路交通系统驾驶员能力与系统任务的匹配与协调研究[J].交通科技,2002,195(6):78-80.
  Chen Bin,Wei Qingyao,Jin Weidong.A study of harmony and math of driver’s ability with system task in road traffic system [J]. Transportation Science & Technology,2002,195(6):78-80.(in Chinese)
[3] Mayou R.Consequences of road traffic accidents for different types of road user[J].Injury,2003,34(2):197-202.
[4] 郭孜政,张殿业,金键,等.机车双司机驾驶行为可靠性研究[J].中国安全科学学报,2007,17(2):163-166.
  Guo Zizheng,Zhang Dianye,Jin Jian,et al.Study on the reliability of double locomotive drivers’ driving behavior [J]. China Safety Science Journal,2007,17(2):163-166.(in Chinese)
[5] 丁玉兰,邵灵敏,胡子谷.基于神经网络的驾驶适性评价系统[J].人类工效学,1998,4(4):19-21.
  Ding Yulan,Shao Lingmin,Hu Zigu.A neural network based driving aptitude evaluation system [J].Human Ergonomics,1998,4(4):19-21.(in Chinese)
[6] 郭孜政,唐优华.单司机值乘安全性评价模型[J].中国铁道科学,2008,18(1):22-25.
  Guo Zizheng,Tang Youhua.Safety evaluation model for the on-duty operation of single locomotive drive[J].China Railway Science,2008,18(1):22-25.(in Chinese)
[7] 张殿业.乘务员动视力及相关指标判别[J].铁道学报,2000,22(3):30-32.
  Zhang Dianye.Analysis on driver’s dynamic sight and its related index[J].Journal of the China Railway Society,2000,22(3):30-32.(in Chinese)
[8] 张殿业.驾驶员动态视野与行车安全可靠度[J].西南交通大学学报,2000,35(3):319-323.
  Zhang Dianye.Dynamic visual field of driver with safety driving[J].Journal of Southwest Jiaotong University,2000,35(3):319-323.(in Chinese)
[9] 李百川.汽车驾驶员注意特性与交通事故关系研究[J].人类工效学,1996,6(2):38-41.
  Li Baichuan.Analysis and study about the relationship between driver’s attention characters and traffic accidents[J]. Chinese Ergonomics,1996,6(2):38-41.(in Chinese)

相似文献/References:

[1]潘福全,陆键,项乔君,等.公路信号平面交叉口安全服务水平研究[J].东南大学学报(自然科学版),2008,38(2):298.[doi:10.3969/j.issn.1001-0505.2008.02.023]
 Pan Fuquan,Lu Jian,Xiang Qiaojun,et al.Level of safety service for highway signalized intersections[J].Journal of Southeast University (Natural Science Edition),2008,38(4):298.[doi:10.3969/j.issn.1001-0505.2008.02.023]
[2]郭唐仪,Lin Xiaoli,Kracht Matthias.高速公路出口匝道事故预测模型优选及弹性分析[J].东南大学学报(自然科学版),2014,44(3):682.[doi:10.3969/j.issn.1001-0505.2014.03.041]
 Guo Tangyi,Lin Xiaoli,Kracht Matthias.Selection and elastic analysis of crash prediction models for freeway exit ramp[J].Journal of Southeast University (Natural Science Edition),2014,44(4):682.[doi:10.3969/j.issn.1001-0505.2014.03.041]
[3]潘应久,陈淑燕.改进的大型场馆看台区行人疏散时间模型[J].东南大学学报(自然科学版),2017,47(3):613.[doi:10.3969/j.issn.1001-0505.2017.03.032]
 Pan Yingjiu,Chen Shuyan.Improved model about pedestrian evacuation time in large-scale stadium audience area[J].Journal of Southeast University (Natural Science Edition),2017,47(4):613.[doi:10.3969/j.issn.1001-0505.2017.03.032]
[4]刘瑞,贺经纬,朱西产,等.基于自然驾驶数据的跟车场景潜在危险估计模型[J].东南大学学报(自然科学版),2019,49(4):788.[doi:10.3969/j.issn.1001-0505.2019.04.024]
 Liu Rui,He Jingwei,Zhu Xichan,et al.Potential risk assessment model in car following based on naturalistic driving data[J].Journal of Southeast University (Natural Science Edition),2019,49(4):788.[doi:10.3969/j.issn.1001-0505.2019.04.024]

备注/Memo

备注/Memo:
作者简介: 郭孜政(1982—),男,博士,讲师,zizhengguo@mars.swjtu.edu.cn.
基金项目: 国家自然科学基金资助项目(60879022,60870005,70422201)、西南交通大学青年教师科研起步资助项目(2009Q038)、中央高校基本科研业务费专项资金资助项目(SWJTU09BR133).
引文格式: 郭孜政,陈崇双,王欣,等.基于证据理论的驾驶行为险态识别方法[J].东南大学学报:自然科学版,2010,40(4):866-870. [doi:10.3969/j.issn.1001-0505.2010.04.038]
更新日期/Last Update: 2010-07-20