[1]牟星,周后型,胡俊,等.三层媒质二维谱域Green函数的路径追踪算法[J].东南大学学报(自然科学版),2010,40(5):901-904.[doi:10.3969/j.issn.1001-0505.2010.05.004]
 Mu Xing,Zhou Houxing,Hu Jun,et al.Path tracking algorithm of 2D spectral Green’s function for three-layered medium[J].Journal of Southeast University (Natural Science Edition),2010,40(5):901-904.[doi:10.3969/j.issn.1001-0505.2010.05.004]
点击复制

三层媒质二维谱域Green函数的路径追踪算法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
40
期数:
2010年第5期
页码:
901-904
栏目:
电磁场与微波技术
出版日期:
2010-09-20

文章信息/Info

Title:
Path tracking algorithm of 2D spectral Green’s function for three-layered medium
作者:
牟星 周后型 胡俊 洪伟
东南大学毫米波国家重点实验室,南京 210096
Author(s):
Mu Xing Zhou Houxing Hu Jun Hong Wei
State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
关键词:
Green函数 路径追踪算法 表面波极点 漏波极点
Keywords:
Green’s function path tracking algorithm surface wave pole leaky wave pole
分类号:
TN011
DOI:
10.3969/j.issn.1001-0505.2010.05.004
摘要:
为了搜索三层媒质二维谱域Green函数中的全部模式极点,提出了一种路径追踪算法.该算法首先利用数学变换,将三层媒质二维谱域Green函数的特征方程替换为复平面上的4个超越方程; 然后,应用路径追踪法和Newton-Raphson迭代法求解各超越方程的根,得到谱域Green函数的全部模式极点,即表面波极点、漏波极点和反常极点.该算法克服了围线积分法中积分路径穿过分支割线进入不同Riemann面时容易造成失根的缺点,可应用于离散复镜像方法和最陡下降路径积分法中,以实现三层媒质二维空域Green函数近场和远场的精确、快速计算.最后,利用数值算例验证了该算法的正确性和有效性.
Abstract:
To locate all the mode poles of the 2D spectral Green’s function for three-layered medium, a path tracking algorithm is proposed. In the algorithm, the characteristic equations of the 2D spectral Green’s function are first substituted with four transcendental equations in the complex plane by mathematical transformation. Then, the path tracking method and the Newton-Raphson iteration are used to solve the roots of the transcendental equations. And all the mode poles of the spectral Green’s function, including surface wave poles, leaky wave poles and improper wave poles, are obtained. This algorithm can overcome the shortcomings of the contour integral method that roots are always lost when the integral paths enter different Riemann sheets through branch cuts. It can be applied to the discrete complex image method and the steepest descent path method to calculate the near field and the far field of the 2D spatial Green’s function quickly and accurately. The numerical experiment results show that the proposed algorithm is accurate and efficient.

参考文献/References:

[1] Collin R E.Field theory of guided wave [M].New York,USA:McGraw-Hill,1960:470-475.
[2] Chow Y L,Yang J J,Fang D G,et al.A closed-form spatial Green’s function for the thick microstrip substrate [J].IEEE Transactions on Microwave Theory and Techniques,1991,39(3):588-592.
[3] Aksun M I.A robust approach for the derivation of closed-form Green’s function [J].IEEE Transactions on Microwave Theory and Techniques,1996,44(5):651-658.
[4] Ling F,Jin J M.Discrete complex image method for Green’s function of general multilayer media[J].IEEE Microwave and Guided Wave Letters,2000,10(6):400-402.
[5] 宋喆,周后型,胡俊,等.分层煤质Green函数的SDP-FLAM算法 [J].中国科学F辑:信息科学,2009,52(5):867-875.
  Song Zhe,Zhou Houxing,Hu Jun,et al.Accurate evaluation of Green’s functions in a layered medium by SDP-FLAM [J].Science in China Series F:Information Sciences,2009,52(5):867-875.(in Chinese)
[6] Hu Jun,Zhou Houxing,Song Zhe,et al.Locating all the modes of Green’s function for a three layered medium based on the path tracking algorithm [J].IEEE Transactions on Antennas and Propagation,2009,57(3):2315-2322.
[7] Tsalamengas L,Fikioris G.TM scattering by conducting strips right on the planar interface of a three-layered medium [J].IEEE Transactions on Antennas and Propagation,1993,41(5):542-555.
[8] Tsalamengas L.TE scattering by conducting strips right on the planar interface of a three-layered medium [J].IEEE Transactions on Antennas and Propagation,1993,41(12):1650-1658.

备注/Memo

备注/Memo:
作者简介: 牟星(1985—),男,硕士生; 周后型(联系人),男,博士,教授,博士生导师,hxzhou@emfield.org.
基金项目: 国家重点基础研究发展计划(973计划)资助项目(2009CB320203,2010CB327400)、国家公益性行业科研专项资助项目(201110046-2)、国家自然科学基金委员会创新研究群体科学基金资助项目(60921063)、国家自然科学基金资助项目(60901013).
引文格式: 牟星,周后型,胡俊,等.三层媒质二维谱域Green函数的路径追踪算法[J].东南大学学报:自然科学版,2010,40(5):901-904. [doi:10.3969/j.issn.1001-0505.2010.05.004]
更新日期/Last Update: 2010-09-20