[1]李印生,陈阳,罗立民,等.基于非局部方向性核先验的PET图像Bayesian重建[J].东南大学学报(自然科学版),2010,40(5):937-942.[doi:10.3969/j.issn.1001-0505.2010.05.011]
 Li Yinsheng,Chen Yang,Luo Limin,et al.PET image bayesian reconstruction based on nonlocal steering kernel prior[J].Journal of Southeast University (Natural Science Edition),2010,40(5):937-942.[doi:10.3969/j.issn.1001-0505.2010.05.011]
点击复制

基于非局部方向性核先验的PET图像Bayesian重建()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
40
期数:
2010年第5期
页码:
937-942
栏目:
图像处理
出版日期:
2010-09-20

文章信息/Info

Title:
PET image bayesian reconstruction based on nonlocal steering kernel prior
作者:
李印生12 陈阳12 罗立民1 陈武凡2 陈芳2 宋培维2
1 东南大学计算机科学与工程学院,南京 210096; 2 南方医科大学生物医学工程学院,广州 510515
Author(s):
Li Yinsheng12 Chen Yang12 Luo Limin1 Chen Wufan2 Chen Fang2 Song Peiwei2
1 School of Computer Science and Engineering, Southeast University, Nanjing 210096, China
2 School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
关键词:
Bayesian-MAP 非局部方向性核先验 方向性矩阵 高阶核回归 结构自适应重建
Keywords:
Bayesian-MAP(maximum a posterior) nonlocal steering kernel prior(NSKP) directional matrix high order kernel regression structure adaptive reconstruction
分类号:
TP751
DOI:
10.3969/j.issn.1001-0505.2010.05.011
摘要:
为了在抑制噪声的同时更好地保持PET重建图像中的细节结构,提出了一种基于非局部方向性核先验(NSKP)的Bayesian重建算法.为了充分利用图像中的全局信息,该算法在二阶核回归过程中估计出图像梯度,计算出相应的方向性矩阵,并根据非局部均值权值矩阵和方向性矩阵的卷积,计算先验项的权值.在重建中,该算法在高阶核回归过程中同时更新图像的梯度和先验信息,而不是单独计算图像梯度.另外,高阶核回归方法运用多自由度的参数估计提高了重建的精确度.研究结果表明,该算法通过计算引入局部结构信息的全局先验权重,更好地抑制了噪声和过平滑,保持了重建图像中细节区域的结构性和背景区域的一致性.对体模数据的模拟实验结果从视觉和数值角度验证了该算法在PET图像重建中的有效性.
Abstract:
To preserve detail structures and suppress noise for position emission tomography(PET)images, a novel Bayesian reconstruction algorithm based on nonlocal steering kernel prior(NSKP)is proposed. To utilize the global information of the image, the algorithm estimates the image gradient information and calculates the directional matrix in the process of two order kernel regression. Then, the weights for the prior term are calculated from the convolution between the nonlocal means weighting matrix and the directional matrix. During the reconstruction, instead of calculating the gradient of the update image, the NSKP approach estimates the gradient and obtains the prior simultaneously. Furthermore, the more degrees of freedom are used in the high order kernel regression to improve the estimation accuracy. The results show that the reconstruction algorithm uses the global prior with local structure information to overcome the noise and over-smoothness, which preserves the structures in detail regions and the consistency in background regions. The simulation results of phantom data prove the effectiveness of the proposed algorithm in points of visional evaluation and numerical evaluation.

参考文献/References:

[1] Kontaxakis G,L Strauss.Maximum likelihood algorithms for image reconstruction in positron emission tomography [J].Radionuclides for Oncology-current Status and Future Aspects.1998,1(2):73-106.
[2] Levitan E,Herman G.A maximum a posteriori probability expectation maximization algorithm for image reconstruction in emission tomography[J].IEEE Trans on Medical Imaging,1987,6(3):185-192.
[3] 陈阳.基于不同先验获取的PET图像优质重建新方法研究[D].广州:南方医科大学生物医学工程学院,2007.
[4] Chen Y,Chen W F,Feng Y Q,et al.Convergent Bayesian reconstruction for PET using new MRF quadratic membrane-plate hybrid multi-order prior[J].Medical Imaging and Augmented Reality,2006,4091(3):309-316.
[5] Takeda H.Kernel regression for image processing and reconstruction[D].Santa Cruz,California,USA:School of Electrical Engineering of University of California,2006.
[6] Takeda H.Kernel regression for image processing and reconstruction[J].IEEE Transactions on Image Processing,2007,16(2):349-366.
[7] Buades A,Coll B,Morel J M.A review of image denoising algorithms with a new one [J].Multiscale Modeling and Simulation:A SIAM Interdisciplinary Journal,2005,4(2):490-530.
[8] Buades A.Image and film denoising by nonlocal means [D].Islas Baleares,Spain:Department of Mathematics and informatics of Universitat de les Illes Balears,2006.
[9] Chen Y,Ma J H,Feng Q J,et al.Nonlocal prior Bayesian tomographic reconstruction [J].J Math Imaging Vis,2008,30(2):133-146.
[10] Yu K,Mateu J,Porcu E.A kernel-based method for nonparametric estimation of variograms[J].Statistica Neerlandica,2007,61(2):173-197.
[11] Takeda H,Farsiu S,Milanfar P.Image denoising by adaptive kernel regression[C] //Proceedings of the 39th Asilomar Conference on Signals,Systems and Computers.Pacific Grove,CA,USA,2005:1660-1665.
[12] Takeda H,Farsiu S,Milanfar P.Robust kernel regression for restoration and reconstruction of Images from sparse noisy data[C] //Proceedings of the International Conference on Image Processing(ICIP). Atlanta,GA,USA,2006:1257-1260.
[13] Fessler J A.Statistical image reconstruction methods for transmission tomography[M].Washington DC,USA:SPIE Press,2000:1-70.

备注/Memo

备注/Memo:
作者简介: 李印生(1988—),男,硕士生; 陈阳(联系人),男,博士,讲师,chenyang.list@seu.edu.cn.
基金项目: 国家重点基础研究发展计划(973计划)资助项目(2010CB732503)、江苏省科研创新学者攀登计划资助项目(BK2009012)、国家自然科学基金资助项目(8100636).
引文格式: 李印生,陈阳,罗立民,等.基于非局部方向性核先验的PET图像Bayesian重建[J].东南大学学报:自然科学版,2010,40(5):937-942. [doi:10.3969/j.issn.1001-0505.2010.05.011]
更新日期/Last Update: 2010-09-20