[1]王勇,毛海军,刘静.带时间窗的物流配送区域划分模型及其算法[J].东南大学学报(自然科学版),2010,40(5):1077-1083.[doi:10.3969/j.issn.1001-0505.2010.05.037]
 Wang Yong,Mao Haijun,Liu Jing.Logistics distribution region partition model with time windows and its algorithms[J].Journal of Southeast University (Natural Science Edition),2010,40(5):1077-1083.[doi:10.3969/j.issn.1001-0505.2010.05.037]
点击复制

带时间窗的物流配送区域划分模型及其算法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
40
期数:
2010年第5期
页码:
1077-1083
栏目:
计算机科学与工程
出版日期:
2010-09-20

文章信息/Info

Title:
Logistics distribution region partition model with time windows and its algorithms
作者:
王勇 毛海军 刘静
东南大学交通学院,南京 210096
Author(s):
Wang Yong Mao Haijun Liu Jing
School of Transportation,Southeast University,Nanjing 210096, China
关键词:
物流配送 配送单元 时滞成本 数学规划模型 混合算法
Keywords:
logistics distribution distribution unit delay cost mathematical programming model hybrid algorithm
分类号:
TP301.6;TP18
DOI:
10.3969/j.issn.1001-0505.2010.05.037
摘要:
针对烟草行业存在客户点大规模、客户需求量不固定、配送车辆最大行驶距离限制以及客户点送货时间不固定等特点,综合考虑配送的多产品、多客户、时间限制等影响因素,通过聚类方法划分不同的配送单元,应用整数规划选择中转站不固定配送单元,以物流配送网络构建的总成本最小化为目标函数,建立了基于配送单元的固定成本和变动成本以及带时间窗的时滞成本的数学规划模型,并提出了一种改进粒子群-遗传混合算法进行直接求解.该算法在评价函数中隐含加入了距离和时间等约束条件,并设计了算法间选择性赋予方法,具有较高的全局和局部搜索能力.实例仿真表明,该混合算法的优化性能和效率优于PSO算法、GA算法、GA-PSO算法和MPSO算法,因此能够更有效地解决大规模配送点的物流配送区域划分问题.
Abstract:
Tobacco industry has large-scale customers, customers’ demand is not fixed, the maximum travel distance of distribution vehicles is limited and customers’ delivery time is not fixed. Based on these features the logistics distribution region is divided into different distribution units by cluster methods, and integer programming is applied to choose unfixed transfer stations. Finally on the basis of fixed cost and variable cost and delay cost with time windows of distribution units, a mathematical programming model is established to minimize the cost of logistics distribution network considering multi-product, multi-client, time constraints and other factors. An EPSO-GA(extended particle swarm optimization-genetic algorithms)is also presented to solve the model. In this algorithm distance and time constraints are added into evaluation function, and selective interaction between the algorithms is designed, therefore, it provides a higher global and local search capability. The simulation results show that the hybrid algorithm can solve distribution region partition problems which include large-scale distribution points. It is more effective than MPSO(multi-phases particle swarm optimization algorithm),GA(genetic algorithms),PSO(particle swarm optimization)and GA-PSO(genetic algorithm-particle swarm optimization)algorithms.

参考文献/References:

[1] 张潜,高立群,胡祥培,等.物流配送路径多目标优化的聚类-改进遗传算法[J].控制与决策,2003,18(4):418-422.
  Zhang Qian,Gao Liqun,Hu Xiangpei,et al.Research on multi-objective vehicle routing problem of optimization based on clustering analysis and improved genetic algorithm[J].Control and Decision,2003,18(4):418-422.(in Chinese)
[2] 张海刚,顾幸生,吴燕翔.改进的粒子群算法及其在带软时间窗车辆调度问题中的应用[J].华东理工大学学报:自然科学版,2009,35(5):774-778.
  Zhang Haigang,Gu Xingsheng,Wu Yanxiang.Vehicle scheduling problem with soft time windows based on improved particle swarm optimization[J].Journal of East China University of Science and Technology:Natural Science Edition,2009,35(5):774-778.(in Chinese)
[3] Lee J-E,Gen M,Rhee K-G.Network model and optimization of reverse logistics by hybrid genetic algorithm[J].Computers and Industrial Engineering,2009,56(3):951-964.
[4] 田青,缪立新,郑力.基于运输规划和组合GA的基本物流网络设计[J].清华大学学报,2004,44(11):1441-1444.
  Tian Qing,Miu Lixin,Zheng Li.Logistics network design based on transport planning and combined GA[J].Journal of Tsinghua University,2004,44(11):1441-1444.(in Chinese)
[5] 秦绪伟,范玉顺,尹朝万.整车物流网络规划问题的混合粒子群算法研究[J].系统工程理论与实践,2006,7(7):47-53.
  Qin Xuwei,Fan Yushun,Yin Chaowan.Research on hybrid particle swarm optimization for automobile logistics network design problem[J].Systems Engineering-Theory & Practice,2006,7(7):47-53.(in Chinese)
[6] Salman A,Ahmad I,Al-Madani S.Particle swarm optimization for task assignment problem [J].Microprocessors and Microsystems,2002,26(4):363-371.
[7] Gorg H,Hermann G.A two-phase hybrid metaheuristic for the vehicle routing problem with time windows [J].European Journal of Operational Research,2005,162(1):220-238.
[8] 刘志雄.基于粒子群算法的物流配送车辆优化调度研究[J].武汉科技大学学报,2009,32(6):615-618.
  Liu Zhixiong.Vehicle scheduling optimization in logistics distribution based on particle swarm optimization algorithm[J].Journal of Wuhan University of Science and Technology,2009,32(6):615-618.(in Chinese)
[9] 胡广浩,毛志忠,何大阔.基于遗传和粒子群结合的文化算法[J].东北大学学报:自然科学版,2009,30(11):1542-1545.
  Hu Guanghao,Mao Zhisheng,He Dakuo.A new cultural algorithm based on hybrid of GA and PSO algorithm[J].Journal of Northeastern University:Natural Science,2009,30(11):1542-1545.(in Chinese)
[10] 郎茂祥,胡思继.用混合遗传算法求解物流配送路径优化问题的研究[J].中国管理科学,2002,10(5):51-56.
  Lang Maoxiang,Hu Siji.Study on the optimization of physical distribution routing problem by using hybrid genetic algorithm[J].Chinese Journal of Management Science,2002,10(5):51-56.(in Chinese)
[11] Dennis G,Yahya R S.Particle swarm optimization for reconfigurable phase differentiated array design [J].Microwave and Optical Technology Letters,2003,38(3):168-175.
[12] Sam R T,Jean Y P,Tong S.Heuristic approaches to vehicle routing with backhauls and time windows[J].Computer and Operations Research,1996,23(11):1043-1057.

备注/Memo

备注/Memo:
作者简介: 王勇(1982—),男,博士生; 毛海军(联系人 ),男,博士,教授,博士生导师,maohaijun@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(50575043).
引文格式: 王勇,毛海军,刘静.带时间窗的物流配送区域划分模型及其算法[J].东南大学学报:自然科学版,2010,40(5):1077-1083. [doi:10.3969/j.issn.1001-0505.2010.05.037]
更新日期/Last Update: 2010-09-20