[1]徐宝国,宋爱国,王爱民.基于小波包能量的脑电信号特征提取方法[J].东南大学学报(自然科学版),2010,40(6):1203-1206.[doi:10.3969/j.issn.1001-0505.2010.06.014]
 Xu Baoguo,Song Aiguo,Wang Aimin.EEG feature extraction method based on wavelet packet energy[J].Journal of Southeast University (Natural Science Edition),2010,40(6):1203-1206.[doi:10.3969/j.issn.1001-0505.2010.06.014]
点击复制

基于小波包能量的脑电信号特征提取方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
40
期数:
2010年第6期
页码:
1203-1206
栏目:
生物医学工程
出版日期:
2010-11-20

文章信息/Info

Title:
EEG feature extraction method based on wavelet packet energy
作者:
徐宝国 宋爱国 王爱民
东南大学仪器科学与工程学院,南京 210096
Author(s):
Xu Baoguo Song Aiguo Wang Aimin
School of Instrument Science and Engineering,Southeast University, Nanjing 210096, China
关键词:
脑机接口 运动想象 小波包变换
Keywords:
brain-computer interface(BCI) motor imagery wavelet packet transform(WPT)
分类号:
R318
DOI:
10.3969/j.issn.1001-0505.2010.06.014
摘要:
在脑机接口研究中,针对运动想象脑电信号的特征抽取,提出了一种基于小波包变换和AR模型的特征提取方法.该方法首先利用小波包变换对大脑C3和C4处采集的2路运动想象脑电信号进行3层分解,抽取小波系数的能量特征; 然后,利用Burg算法提取脑电信号的5阶AR模型系数; 最后,将这2类特征组合,使用基于马氏距离的线性判别分类器对左右手运动想象脑电模式进行分类,正确率达到91.43%.该方法提取的特征向量较好地反应了运动想象脑电信号的事件相关去同步和事件相关同步的变化时程,为BCI研究中脑电信号的模式识别提供了新的思路.此外,该方法的识别率高,复杂性低,适合应用于在线脑机接口中.
Abstract:
In the study of brain-computer interface(BCI), a novel method of extracting motor imagery electroencephalography(EEG)features based on the wavelet packet transform(WPT)and the autoregressive(AR)model is proposed. First, the EEG signals sampled from the C3 and C4 positions of the brain are decomposed to three levels by the WPT, and the features of the wavelet coefficient energy are computed. Then, the fifth-order AR coefficients of the EEG signals are estimated by the Burg’s algorithm. Finally, by combining the two kinds of features, the combination features are used as the input vectors for linear discriminant analysis(LDA)classifier based on the mahalanobis distance to classify the pattern of the left and the right hand motor imagery EEG signals, and the recognition rate is 91.43%. The experimental results show that the eigenvector extracted by the proposed method can effectively reflect the event-related desynchronization(ERD)and the event-related synchronization(ERS)time course changes of the motor imagery EEG. This method provides a new idea for the EEG pattern recognition in BCI research. In addition, this method has a high recognition rate and low complexity. It is suitable for the application in online BCI systems.

参考文献/References:

[1] van Gerven M,Farquhar J,Schaefer R,et al.The brain-computer interface cycle [J].J Neural Eng,2009,6(4):1-10.
[2] Vaughan T M,Wolpaw J R.The third international meeting on brain-computer interface technology:making a difference [J].IEEE Trans Neural Syst Rehabil Eng,2006,14(2):126-127.
[3] Wolpaw J R,Birbaumer N,McFarland D J,et al.Brain-computer interfaces for communication and control [J].Clinical Neurophysiology,2002,113(6):767-791.
[4] Pfurstcheller G,Muller-Putz G R,Schlogl A,et al.15 years of research at Graz University of Technology:current projects [J].IEEE Trans Neural Syst Rehabil Eng,2006,14(2):205-210.
[5] Varsta M,Heikkonen J,Millan J.Evaluating the performance of three feature sets for brain-computer interfaces with an early stopping MLP committee[C] //Proceedings of the 15th International Conference on Pattern Recognition.Barcelona,Spain,2000:2907-2910.
[6] Burke D P,Kelly S P,de Chazal P,et al.A parametric feature extraction and classification strategy for brain-computer interfacing [J].IEEE Trans Neural Syst Rehabil Eng,2005,13(1):12-17.
[7] Pfurstcheller G,Neuper C.Motor imagery and direct brain-computer communication [J].Proceedings of the IEEE,2001,89(7):1123-1134.
[8] Zhang J,Zheng C,Xie A.Bispectrum analysis of focal ischemic cerebral EEG signal using third-order recursion method [J].IEEE Trans Biomed Eng,2000,47(3):352-359.
[9] Fatourechi M,Mason S G,Birch G E.A wavelet-based approach for the extraction of event related potentials from EEG [C] //Proceedings of the IEEE International Conference on Acoustics,Speech,and Signal Processing. Quebec,Canada,2004:737-740.
[10] Blankertz B,Muller K R,Curio G,et al.The BCI competition 2003:progress and perspectives in detection and discrimination of EEG single trials[J].IEEE Trans Biomed Eng,2004,51(6):1044-1051.
[11] Pfurstcheller G,Lopes da Silva F H.Event-related EEG/MEG synchronization and desynchronization:basic principles [J].Clinical Neurophysiology, 1999,110(11):1842-1857.
[12] Rosso O A,Martin M T,Figliola A,et al.EEG analysis using wavelet-based information tools [J].J Neurosci Methods,2006,153(2):163-182.
[13] Lotte F,Congedo M,Lecuyer A,et al.A review of classification algorithms for EEG-based brain-computer interfaces [J].J Neural Eng,2007,4(2):R1-R13.
[14] Besserve M,Jerbi K,Laurent F,et al.Classification methods for ongoing EEG and MEG signals [J].Biol Res,2007,40(4):415-437.

相似文献/References:

[1]徐宝国,宋爱国.单次运动想象脑电的特征提取和分类[J].东南大学学报(自然科学版),2007,37(4):629.[doi:10.3969/j.issn.1001-0505.2007.04.017]
 Xu Baoguo,Song Aiguo.Feature extraction and classification of single trial motor imagery EEG[J].Journal of Southeast University (Natural Science Edition),2007,37(6):629.[doi:10.3969/j.issn.1001-0505.2007.04.017]

备注/Memo

备注/Memo:
作者简介: 徐宝国(1981—),男,博士; 宋爱国(联系人),男,博士,教授,博士生导师,a.g.song@seu.edu.cn.
基金项目: 国家高技术研究发展计划(863计划)资助项目(2009AA01Z311,2008AA04Z0202)、国家自然科学基金资助项目(60775057).
引文格式: 徐宝国,宋爱国,王爱民.基于小波包能量的脑电信号特征提取方法[J].东南大学学报:自然科学版,2010,40(6):1203-1206. [doi:10.3969/j.issn.1001-0505.2010.06.014]
更新日期/Last Update: 2010-11-20