# [1]刘树青,王兴松.基于零空间法的柔性多体系统动力学计算及仿真[J].东南大学学报(自然科学版),2010,40(6):1348-1352.[doi:10.3969/j.issn.1001-0505.2010.06.042] 　Liu Shuqing,Wang Xingsong.Dynamics calculation and simulation of flexible multi-body system based on null-space method[J].Journal of Southeast University (Natural Science Edition),2010,40(6):1348-1352.[doi:10.3969/j.issn.1001-0505.2010.06.042] 点击复制 基于零空间法的柔性多体系统动力学计算及仿真() 分享到： var jiathis_config = { data_track_clickback: true };

40

2010年第6期

1348-1352

2010-11-20

## 文章信息/Info

Title:
Dynamics calculation and simulation of flexible multi-body system based on null-space method

1 东南大学机械工程学院, 南京 211189; 2 南京工程学院先进制造技术工程中心, 南京 211167
Author(s):
1 School of Mechanical Engineering, Southeast University,Nanjing 211189, China
2 Advanced Manufacturing Technology and Engineering Center, Nanjing Institute of Technology, Nanjing 211167, China

Keywords:

TP242
DOI:
10.3969/j.issn.1001-0505.2010.06.042

Abstract:
In order to realize the formulaic modeling and precise solution of a flexible multi-body system, a dynamic model with Lagrange multipliers is established by natural coordinates. The orthogonal complement of constraint Jacobian is used for dynamic analysis. The dynamic model is transformed into a system of ordinary differential equations by the orthogonal basis of the null-space. The discretion in time domain is obtained. The numerical method and the simulation steps are given in detail, and then the dynamic modeling and calculation of the flexible gravity pendulum is completed. The simulation results are consistent with the results obtained from the traditional method, which verifies the validity of the proposed method. The dynamic model of a flexible scissor structure, which is widely used in the space deployable mechanism, is established in the environment of Mathematica. The corresponding numerical calculation and simulation are carried out by the null-space method. The dynamic response curves and the position error due to the elastic vibration of the flexible scissor structure are presented.

## 参考文献/References:

[1] 孙斌,徐威,杨汝清.高压绝缘子清扫机器人的动力学建模及分析[J].上海交通大学学报:中文版,2004,38(8):1304-1306.
Sun Bin,Xu Wei,Yang Ruqing.Dynamic modeling and analysis of a cleaning robot for hotline insulators[J].Journal of Shanghai Jiaotong University:Chinese Edition,2004,38(8):1304-1306.(in Chinese)
[2] 陈炜,余跃庆,张绪平,等.欠驱动柔性机器人动力学建模及仿真[J].中国机械工程,2005,17(9):931-936.
Chen Wei,Yu Yueqing,Zhang Xuping,et al.Dynamic modeling and simulation of underactuated flexible robot[J].China Mechanical Engineering,2005,17(9):931-936.(in Chinese)
[3] 赵建伟,阮晓钢.柔性两轮直立式自平衡仿人机器人的建模及控制[J].机器人,2009,31(2):179-186.
Zhao Jianwei,Ruan Xiaogang.Modeling and control of a flexible two-wheel upright self-balance humanoid robot[J].Robot,2009,31(2):179-186.(in Chinese)
[4] Martins J M,Mohamed Z,Tokhi M O,et al.Approaches for dynamic modeling of flexible manipulator systems[J].Control Theory Appl,2003,150(4):401-411.
[5] Haug E J.Computer aided kinematics and dynamics of mechanical system:basic methods[M].Boston:Allyn & Bacon,1989.
[6] Terse Z,Lefeber D,Muftic O.Null space integration method for constrained multibody systems with no constraint violation [J].Multibody System Dynamics,2001,6(3):229-243.
[7] Aghili F,Piedboeuf J.Simulation of motion of constrained multibody systems based on projection operator [J].Multibody System Dynamics,2003,10(1):3-16.
[8] Betsch P,Leyendecker S.The discrete null space method for the energy consistent integration of constrained mechanical systems.Part II:multibody dynamics[J].Int J Numer Methods Eng,2006,67(4):499-552.
[9] Sigrid L,Sina O B.Discrete mechanics and optimal control for constrained multibody dynamics[C] //Proceedings of IDETC/MSNDC.Las Vegas,Nevada,USA,2007:1-10.
[10] Ahmed A S,Bassam A H.A two-loop sparse matrix numerical integration procedure for the solution of differential/algebraic equations:application to multibody systems[J].Journal of Sound and Vibration,2009,327(3/4/5):557-563.
[11] 杨毅,丁希仑.剪式单元可展机构静力学分析与拓扑优化设计[J].中国机械工程,2010,21(2):184-189.
Yang Yi,Ding Xilun.Analysis and topology optimization of deployable mechanism based on pantograph [J].China Mechanical Engineering,2010,21(2):184-189.(in Chinese)