[1]梁瑞宇,邹采荣赵力,奚吉,等.语音压缩感知及其重构算法[J].东南大学学报(自然科学版),2011,41(1):1-5.[doi:10.3969/j.issn.1001-0505.2011.01.001]
 Liang Ruiyu,Zou Cairong,Zhao Li,et al.Compressed sensing in speech and its reconstruction algorithm[J].Journal of Southeast University (Natural Science Edition),2011,41(1):1-5.[doi:10.3969/j.issn.1001-0505.2011.01.001]
点击复制

语音压缩感知及其重构算法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
41
期数:
2011年第1期
页码:
1-5
栏目:
信息与通信工程
出版日期:
2011-01-20

文章信息/Info

Title:
Compressed sensing in speech and its reconstruction algorithm
作者:
梁瑞宇12邹采荣1赵力1奚吉2张学武2
(1东南大学信息科学与工程学院, 南京 210096)
(2河海大学计算机及信息工程学院, 常州 213022)
Author(s):
Liang Ruiyu12Zou Cairong1Zhao Li1Xi Ji2Zhang Xuewu2
(1School of Information Science and Engineering, Southeast University, Nanjing 210096,China)
(2College of Computer and Information, Hohai University, Changzhou 213022,China)
关键词:
次梯度投影双正交小波压缩感知稀疏重构
Keywords:
subgradient projection biorthogonal wavelet compressed sensing sparse reconstruction
分类号:
TN912
DOI:
10.3969/j.issn.1001-0505.2011.01.001
摘要:
在研究语音信号在小波域的稀疏性的基础上,提出双正交小波变换的方法,与一维小波变换方法相比稀疏度提高10%~25%.此外,提出基于自适应次梯度投影算法(ASPM)进行压缩感知(CS)语音信号重构的方案.ASPM算法首先根据压缩感知重构模型建立包含稀疏重构信号并具有随机属性的凸集,然后运用次梯度投影的思想将该凸集的投影转化为对多个闭合半平面的投影,最后将更新后的稀疏重构信号投影到限定集合上.同时,该算法设计了自适应调节膨胀系数的机制以获得快速收敛性.理论分析和仿真结果表明,该算法具有快速收敛性和较低的重构误差,在不同的噪声强度下具有较高的鲁棒性.
Abstract:
Based on the research of sparseness of speech signals in wavelet domain, a method based on biorthogonal wavelet transform is presented. Compared with 1-dimension wavelet transform method, the sparseness can be improved 10% to 25% at least. Furthermore, Adaptive subgradient projection method(ASPM) is proposed in this paper for speech reconstruction in compressed sensing. Stochastic property convex set which contains the sparse reconstruction signal is established by the CS(compressed sensing) reconstruction model firstly. Then subgradient projection is adopted to convert projection onto convex sets to projection into multiple closed halfspaces. Finally, the updated sparse reconstruction signal vector is projected onto the constrained set. Meanwhile, mechanism which adaptively adjusts inflation parameter in different iterations has been designed for fast convergence. Theoretical analysis and simulation results conclude that this algorithm has fast convergence, lower reconstruction error, and exhibits higher robustness in different noise intensity.

参考文献/References:

[1] Candes E J,Tao T.Near optimal signal recovery from random projections:universal encoding strategies [J].IEEE Transactions on Information Theory,2006,52(12):5406-5425.
[2] Plumbley M,Abdallah S,Blumensath T,et al.Sparse representations of polyphonic music[J].Signal Processing,2006,86(3):417-431.
[3] Plumbley M,Abdallah S,Blumensath T,et al.Musical audio analysis using sparse representations[C]//COMPSTAT 2006 Proceedings in Computational Statistics.Heidelberg,Germany,2006:104-117.
[4] Davies M,Daudet L.Sparse audio representations using the MCLT[J].Signal Processing,2006,86(3):457-470.
[5] Peyré G.Best basis compressed sensing[J].IEEE Transactions on Signal Processing,2010,58(5):2613-2622.
[6] 郭海燕,杨震.基于近似KLT 域的语音信号压缩感知[J].电子信息学报,2009,31(12):2948-2952.
  Guo Haiyan,Yang Zhen.Compressed speech signal sensing based on approximate KLT[J].Journal of Electronics &Information Technology,2009,31(12):2948-2952.(in Chinese)
[7] 石光明,刘丹华,高大化,等.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081.
  Shi Guangming,Liu Danhua,Gao Dahua,et al.Advances in theory and application of compressed sensing [J].Acta Electronica Sinica,2009,37(5):1070-1081.(in Chinese)
[8] Baraniuk R G.Compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
[9] 王青云,赵力,邹采荣.基于次梯度投影的数字助听器自适应声源定位方法[J].东南大学学报:自然科学版,2009,39(4):667-672.
  Wang Qinyun,Zhao Li,Zou Cairong.Acoustic source localization based on adaptive subgradient projection in digital hearing aids[J].Journal of Southeast University:Natural Science Edition,2009,39(4):667-672.(in Chinese)
[10] Figueiredo M A T,Nowak R D,Wright S J,et al.Gradient projection for sparse reconstruction:application to compressed sensing and other inverse problems[J].Selected Topics in Signal Processing,2007,1(4):586-597.

相似文献/References:

[1]李洪刚,吴乐南.基于任意小波的提升格式的设计[J].东南大学学报(自然科学版),2001,31(4):22.[doi:10.3969/j.issn.1001-0505.2001.04.006]
 Li Honggang,Wu Lenan.Design of Lifting Scheme of Arbitrary Wavelets[J].Journal of Southeast University (Natural Science Edition),2001,31(1):22.[doi:10.3969/j.issn.1001-0505.2001.04.006]

备注/Memo

备注/Memo:
作者简介:梁瑞宇(1978—),男,博士生,讲师;赵力(联系人),男,博士,教授,博士生导师,zhaoli@seu.edu.cn.
基金项目:国家自然科学基金资助项目(60472058,60975017)、江苏省自然科学基金资助项目(BK2008291)、中央高校基本科研业务费专项资金资助项目(2009B32614).
引文格式: 梁瑞宇,邹采荣,赵力,等.语音压缩感知及其重构算法[J].东南大学学报:自然科学版,2011,41(1):1-5.[doi:10.3969/j.issn.1001-0505.2011.01.001]
更新日期/Last Update: 2011-01-20