[1]钟林枫,罗翔,郭晨光.基于两点式步行吸引盆计算的稳定性分析[J].东南大学学报(自然科学版),2011,41(1):89-94.[doi:10.3969/j.issn.1001-0505.2011.01.018]
 Zhong Linfeng,Luo Xiang,Guo Chenguang.Stability analysis of attraction basin in two-point-foot walking pattern[J].Journal of Southeast University (Natural Science Edition),2011,41(1):89-94.[doi:10.3969/j.issn.1001-0505.2011.01.018]
点击复制

基于两点式步行吸引盆计算的稳定性分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
41
期数:
2011年第1期
页码:
89-94
栏目:
自动化
出版日期:
2011-01-20

文章信息/Info

Title:
Stability analysis of attraction basin in two-point-foot walking pattern
作者:
钟林枫罗翔郭晨光
(东南大学机械工程学院, 南京211189)
Author(s):
Zhong LinfengLuo XiangGuo Chenguang
(School of Mechanical Engineering, Southeast University,Nanjing 211189, China)
关键词:
被动行走倒立摆Poincare映射数值法
Keywords:
passive walking inverted pendulum Poincare mapping numerical method
分类号:
TP242
DOI:
10.3969/j.issn.1001-0505.2011.01.018
摘要:
为了研究两足步行过程中步态稳定性及步行能耗的问题,通过对人脚结构的分析提出了一种新型的步行模式——两点式步行模式,并建立了基于此模式的直腿无膝-倒立摆动力学模型.运用Poincare映射法,提出了一种数值算法,计算了该直腿无膝模型的不动点及吸引盆; 研究了模型特性参数λ、步长对吸引盆特性及步行能耗的影响.系数λ增大会使吸引盆面积减小,收敛到不动点的速度变快,快速收敛到不动点的初始条件比例变大.步长增大会使吸引盆面积增大,模型在步行过程中单位距离消耗的能量增加.结果表明,λ为0.55和步长为0.50的参数组合更有利于对机器人系统的控制.
Abstract:
A new walking pattern denoted as two-point-foot walking pattern is proposed according to the foot structure of human being. The equations of a planar straight leg-inverted pendulum based on this pattern are derived to study the stability of gait and the energy consumption in biped walking. A new kind of numerical algorithm is put forward according to Poincare mapping. The fixed points and the basin of attraction of this model are obtained by the numerical method. The effects of λ and step variation on the basin of attraction and energy consumption are discussed for the biped walking. The area of basin of attraction decreases with the increase of coefficient λ; meanwhile, the speed converging to the fixed point accelerates; the ratio of initial conditions which can converge to the fixed point quickly increases. On the other hand, the area of basin of attraction increases with the step length; so that more energy would be consumed for unit distance of the model’s walk. A parameters combination that λ is 0. 55 and step is 0. 50 is of advantage for the control of robot.

参考文献/References:

[1] 柳宁,李俊峰,王天舒.简单被动行走模型及不动点的吸引盆计算[J].力学与实践,2008,30(1):18-22.
  Liu Ning,Li Junfeng,Wang Tianshu.Simulation of a simple passive dynamic walking model and the basin of attraction of its fixed point[J].Mechanics in Engineering,2008,30(1):18-22.(in Chinese)
[2] McGeer T.Passive dynamic walking[J].INT J Robot RES,1990,9(2):62-82.
[3] McGeer T.Dynamics and control of bipedal locomotion[J].Theoretical Biology,1993,163(3):277-314.
[4] Coleman M,Ruina A.An uncontrolled toy that can walk but cannot stand still[J].Phys Rev Lett,1998,80(16):3658-3661.
[5] Collins S,Ruina A,Tedrake R,et al.Efficient bipedal robots based on passive-dynamic walkers[J].Science,2005,307(5712):1082-1085.
[6] Tedrake R,Zhang T W,Fong M,et al.Actuating a simple 3D passive dynamic walker[C]//The 2004 International Conference Robotics and Automation (ICRA).Sendai,Japan,2004:4656-4661.
[7] Luo Xiang,Zhang Jianzhong.Sensor-based biped walking:a sagittal plane[C]//Mechatronics and Machine Vision in Practice.Auckland,New Zealand,2008:555-560.
[8] 钱竞光,宋雅伟,叶强,等.步行动作的生物力学原理及其步态分析[J].南京体育学院学报:自然科学版,2006,5(4):1-8.
  Qian Jingguang,Song Yawei,Ye Qiang,et al.The biomechanics principle of walking and analysis gait[J].Journal of Nanjing Institute of Physical Education:Nature Science,2006,5(4):1-8.(in Chinese)
[9] 盛昭翰,马海军.非线性动力系统分析引论[M].北京:科学出版社,2001:15-20.
[10] 柳宁,李俊峰,王天舒.用胞胞映射计算被动行走模型不动点的吸引盆[J].工程力学,2008,25(10):218-223.
  Liu Ning,Li Junfeng,Wang Tianshu.Study of the basin of attraction of passive models by the aid of cell-to-cell mapping method[J].Engineering Mechanics,2008,25(10):218-223.(in Chinese)

备注/Memo

备注/Memo:
作者简介:钟林枫(1986—),男,硕士生;罗翔 (联系人),男,博士,副教授,硕士生导师,luox@seu.edu.cn.
基金项目:国家自然科学基金资助项目(50775037).
引文格式: 钟林枫,罗翔,郭晨光.基于两点式步行吸引盆计算的稳定性分析[J].东南大学学报:自然科学版,2011,41(1):89-94.[doi:10.3969/j.issn.1001-0505.2011.01.018]
更新日期/Last Update: 2011-01-20