[1]杨立波,陈永平,张程宾,等.受限Lennard-Jones流体自扩散系数的分子动力学模拟[J].东南大学学报(自然科学版),2011,41(2):317-320.[doi:10.3969/j.issn.1001-0505.2011.02.020]
 Yang Libo,Chen Yongping,Zhang Chengbin,et al.Molecular dynamics simulation of self-diffusion coefficient of confined Lennard-Jones fluid[J].Journal of Southeast University (Natural Science Edition),2011,41(2):317-320.[doi:10.3969/j.issn.1001-0505.2011.02.020]
点击复制

受限Lennard-Jones流体自扩散系数的分子动力学模拟()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
41
期数:
2011年第2期
页码:
317-320
栏目:
能源与动力工程
出版日期:
2011-03-20

文章信息/Info

Title:
Molecular dynamics simulation of self-diffusion coefficient of confined Lennard-Jones fluid
作者:
杨立波陈永平张程宾施明恒
(东南大学能源与环境学院, 南京 210096)
Author(s):
Yang LiboChen YongpingZhang ChengbinShi Mingheng
(School of Energy and Environment, Southeast University, Nanjing 210096, China)
关键词:
分子动力学自扩散系数Lennard-Jones流体径向分布函数
Keywords:
molecular dynamics self-diffusion coefficient Lennard-Jones fluid radial distribution function
分类号:
TK124
DOI:
10.3969/j.issn.1001-0505.2011.02.020
摘要:
基于平衡态分子动力学(EMD)方法,建立了受限空间中的Lennard-Jones(LJ)流体自扩散模型.采用径向分布函数对LJ流体微观结构进行了表征,模拟了LJ流体在纳米尺度受限空间中的自扩散系数,并将其与相应的自由空间内LJ流体自扩散系数进行了比较,同时从分子水平分析了温度、密度和受限尺度对自扩散系数的影响.研究结果表明:受限空间内LJ流体自扩散系数随受限尺度的增大而逐渐增大; 与自由空间一样,受限LJ流体自扩散系数也随温度的升高而近似线性增加,随密度的增加而逐渐减小,但始终小于相同温度、密度条件下自由空间所对应值.并且根据文献中的实验数据验证了该模型的准确性.
Abstract:
A self-diffusion model of Lennard-Jones (LJ) fluid in confined space was developed by using equilibrium molecular dynamics (EMD) simulation method. The radial distribution function is utilized to analyze the LJ fluid microstructure. The self-diffusion coefficient of LJ fluid in the nanoscale confined space is calculated and compared with that in free space. The effects of temperature, density, and confined scale on the self-diffusion coefficient are all investigated and discussed at the molecular level. The results indicate that the LJ fluid self-diffusion coefficient in confined space increases with the increasing confined scale. Similar to that in free space, the LJ fluid self-diffusion coefficient in confined space also increases approximately in a linear fashion with temperature, while it decreases gradually with the increasing density. However, the LJ fluid self-diffusion coefficient in confined space is smaller than that in free space with the same temperature and density. In addition, the accuracy of the self-diffusion coefficient calculated by the present model is verified by the experimental data available in the literature.

参考文献/References:

[1] Liang Z,Tsai H L.Molecular dynamics simulations of self-diffusion coefficient and thermal conductivity of methane at low and moderate densities [J].Fluid Phase Equilibria,2010,297(1):40-45.
[2] Cao B Y,Chen M,Guo Z Y.Effect of surface roughness on gas flow in microchannels by molecular dynamics simulation [J].International Journal of Engineering Science,2006,44(13/14):927-937.
[3] Sofos F D,Karakasidis T E,Liakopoulos A.Effects of wall roughness on flow in nanochannels [J].Physical Review E,2009,79(2):026305.
[4] Alder B J,Wainwright T E.Phase transition for a hard sphere system [J].Journal of Chemical Physics,1957,27(5):1208-1209.
[5] Meier K,Laesecke A,Kabelac S.A molecular dynamics simulation study of the self-diffusion coefficient and viscosity of the Lennard-Jones fluid [J].International Journal of Thermophysics,2001,22(1):161-173.
[6] Reis R A,Silva F C,Nobrega R,et al.Molecular dynamics simulation data of self-diffusion coefficient for Lennard-Jones chain fluids [J].Fluid Phase Equilibria,2004,221(1/2):25-33.
[7] Marinakis S,Samios J.The temperature and density dependence of fluid xenon self-diffusion coefficients:a comparison between experimental,theoretical and molecular dynamics results [J].Journal of Supercritical Fluids,2005,34(1):81-89.
[8] Zabaloy M S,Vasquez V R,Macedo E A.Description of self-diffusion coefficients of gases,liquids and fluids at high pressure based on molecular simulation data [J].Fluid Phase Equilibria,2006,242(1):43-56.
[9] Bitsanis I,Magda J J,Tirrell M,et al.Molecular dynamics of flow in micropores [J].Journal of Chemical Physics,1987,87(3):1733-1750.
[10] Pikunic J,Gubbins K E.Molecular dynamics simulation of simple fluids confined in realistic models of nanoporous carbons [J].The European Physical Journal E,2003,12(1):35-40.
[11] Magda J J,Tirrell M,Davis H T.Molecular dynamics of narrow,liquid-filled pores [J].Journal of Chemical Physics,1985,83(4):1888-1901.
[12] Rapaport D C.The art of molecular dynamics simulation [M].Cambridge:Cambridge University Press,1995.
[13] Naghizadeh J,Rice S A.Kinetic theory of dense fluids.X.measurement and interpretation of self-diffusion in liquid Ar,Kr,Xe,and CH4 [J].The Journal of Chemical Physics,1962,36(10):2710-2720.

相似文献/References:

[1]吴勇华,杨决宽,陈云飞,等.超晶格薄膜热传导的分子动力学模拟[J].东南大学学报(自然科学版),2003,33(4):468.[doi:10.3969/j.issn.1001-0505.2003.04.021]
 Wu Yonghua,Yang Juekuan,Chen Yunfei,et al.Molecular dynamics simulation of superlattice thermal conductivities[J].Journal of Southeast University (Natural Science Edition),2003,33(2):468.[doi:10.3969/j.issn.1001-0505.2003.04.021]
[2]王玉娟,郭亚杰,裘英华,等.硅表面微结构对表面润湿方向性影响的分子动力学研究[J].东南大学学报(自然科学版),2014,44(6):1161.[doi:10.3969/j.issn.1001-0505.2014.06.012]
 Wang Yujuan,Guo Yajie,Qiu Yinghua,et al.Effects of surface microstructure on wetting direction of silicon substrates by molecular dynamics study[J].Journal of Southeast University (Natural Science Edition),2014,44(2):1161.[doi:10.3969/j.issn.1001-0505.2014.06.012]
[3]陈伟宇,刘晨晗,陶毅,等.声子聚焦效应对薄膜间接触热阻尺寸效应的影响[J].东南大学学报(自然科学版),2016,46(6):1155.[doi:10.3969/j.issn.1001-0505.2016.06.008]
 Chen Weiyu,Liu Chenhan,Tao Yi,et al.Effect of phonon focusing on thickness-dependent contact thermal conductance between thin films[J].Journal of Southeast University (Natural Science Edition),2016,46(2):1155.[doi:10.3969/j.issn.1001-0505.2016.06.008]

备注/Memo

备注/Memo:
作者简介:杨立波(1986—),男,硕士生;陈永平(联系人),男,博士,教授,博士生导师,ypchen@seu.edu.cn.
基金项目:国家自然科学基金资助项目(51076028).
引文格式: 杨立波,陈永平,张程宾,等.受限Lennard-Jones流体自扩散系数的分子动力学模拟[J].东南大学学报:自然科学版,2011,41(2):317-320.[doi:10.3969/j.issn.1001-0505.2011.02.020]
更新日期/Last Update: 2011-03-20