[1]陈晓乐,钟文琪,金保昇.可吸入颗粒污染物在下呼吸道运动和沉积规律的数值模拟[J].东南大学学报(自然科学版),2011,41(2):393-399.[doi:10.3969/j.issn.1001-0505.2011.02.034]
 Chen Xiaole,Zhong Wenqi,Jin Baosheng.Simulation on movement and deposition of inhalable contaminant particles in lower respiratory tract[J].Journal of Southeast University (Natural Science Edition),2011,41(2):393-399.[doi:10.3969/j.issn.1001-0505.2011.02.034]
点击复制

可吸入颗粒污染物在下呼吸道运动和沉积规律的数值模拟()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
41
期数:
2011年第2期
页码:
393-399
栏目:
环境科学与工程
出版日期:
2011-03-20

文章信息/Info

Title:
Simulation on movement and deposition of inhalable contaminant particles in lower respiratory tract
作者:
陈晓乐钟文琪金保昇
(东南大学能源与环境学院,南京210096)
Author(s):
Chen XiaoleZhong WenqiJin Baosheng
(School of Energy and Environment, Southeast University, Nanjing 210096, China)
关键词:
慢性阻塞性肺病下呼吸道颗粒沉积沉积形式沉积率
Keywords:
COPD(chronic obstructive pulmonary disease) lower respiratory tract particle deposition deposition pattern deposition efficiency
分类号:
X503.1
DOI:
10.3969/j.issn.1001-0505.2011.02.034
摘要:
为研究受慢性阻塞性肺病影响的呼吸道内气固流动特性,建立了基于Weibel模型的5~8级三维肺部模型.气相采用标准k-ε湍流模型,颗粒相采用离散颗粒模型.三级呼吸道内模拟的气固流动特性与实验结果进行了对比验证.在呼吸强度为30,60和90 L/min条件下,模拟了稳态、非稳态吸气时第7级内侧呼吸道受慢性阻塞性肺病影响收缩和非稳态正常呼吸道内的气固流动特性,分析了颗粒沉积形式和沉积率.通过对比发现:呼吸道内变形使前后级沉积范围缩小,对侧沉积范围扩大; 使前级同侧和后级的沉积率下降,对侧和同级外侧的沉积率增加; 并使更多的颗粒在收缩处产生沉积,使原本阻塞的呼吸道愈发狭窄.
Abstract:
A comprehensive three-dimensional numerical pulmonary model of generation 5 to 8 based on Weibel’s model was developed to study the gas/solid flow behaviors in a pulmonary airway affected by chronic obstructive pulmonary disease (COPD), a high morbidity lung disease of which the patients suffer from respiratory difficulty caused by narrowed airway. The gas phase was modeled with k-ε turbulence computational fluid dynamics (CFD) model and the particle phase was modeled with discrete particle model (DPM). Computational gas-solid flow behaviors in a three-generation airway have been compared and validated with experiments. The gas/solid flow behaviors in airway with generation 7 affected by COPD under steady and unsteady inhalation and standard airway under unsteady inhalation were simulated, and the particle deposition patterns and deposition efficiencies (DEs) were also analyzed under breathing intensity of 30, 60 and 90 L/min. It is found that the obstruction in airway may decrease the deposition area of higher and lower generations and increase the area of opposite generation through the comparison. And it also may lower the DEs of higher generation on the same side and lower generation, and raise the DEs of opposite generations and lateral generation of the same side. More particles would deposit on the constricted generation and thus the obstructed generation may become narrower.

参考文献/References:

[1] 李光辉.槽道内可吸入颗粒物近壁运动的直接数值模拟[D].北京:清华大学热能工程系,2005.
[2] 郑鸿翱.吸烟所致慢性阻塞性肺疾病发生机制的研究[D].汕头:汕头大学医学院,2008.
[3] Zhang Z,Kleinstreuer C,Kim C S.Gas-solid two-phase flow in a triple bifurcation lung airway model[J].International Journal of Multiphase Flow,2002,28(6):1021-1046.
[4] Zhang Z,Kleinstreuer C.Transient airflow structures and particle transport in a sequentially branching lung airway model[J].Physics of Fluids,2002,14(2):862-880.
[5] Shi H,Kleinstreuer C,Zhang Z,et al.Nanoparticle transport and deposition in bifurcating tubes with different inlet conditions[J].Physics of Fluids,2004,16(7):2199-2213.
[6] Li Z,Kleinstreuer C,Zhang Z.Simulation of airflow fields and microparticle deposition in realistic human lung airway models.part Ⅰ:airflow patterns[J].European Journal of Mechanics B/Fluids,2007,26(5):632-649.
[7] Li Z,Kleinstreuer C,Zhang Z.Simulation of airflow fields and microparticle deposition in realistic human lung airway models.part Ⅱ:particle transport and deposition[J].European Journal of Mechanics B/Fluids, 2007,26(5):650-668.
[8] Kleinstreuer C,Zhang Z.An adjustable triple-bifurcation unit model for air-particle flow simulations in human tracheobronchial airways[J].Journal of Biomechanical Engineering,2009,131(2):021007.
[9] Wang Z C,Hopke P K,Ahmadi G,et al.Fibrous particle deposition in human nasal passage:the influence of particle length,flow rate,and geometry of nasal airway[J].Journal of Aerosol Science, 2008,39(12):1040-1054.
[10] Dailey H L,Ghadiali S N.Fluid-structure analysis of microparticle transport in deformable pulmonary alveoli[J].Journal of Aerosol Science,2007,38(3):269-288.
[11] Grgic B,Martin A R,Finlay W H.The effect of unsteady flow rate increase on in vitro mouth-throat deposition of inhaled boluses[J].Journal of Aerosol Science,2006,37(10):1222-1233.
[12] Storey-Bishoff J,Noga M,Finlay W H.Deposition of micrometer-sized aerosol particles in infant nasal airway replicas[J].Journal of Aerosol Science,2008,39(12):1055-1065.
[13] Brouns M,Verbanck S,Lacor C.Influence of glottic aperture on the tracheal flow[J].Journal of Biomechanics,2007,40(1):165-172.
[14] Lee J H,Na Y,Kim S K,et al.Unsteady flow characteristics through a human nasal airway[J].Respiratory Physiology &Neurobiology,2010,172(3):136-146.
[15] 曾敏捷,胡桂林,樊建人.微颗粒在人体上呼吸道中运动沉积的数值模拟[J].浙江大学学报:工学版,2006,40(7):1164-1167,1256.
  Zeng Minjie,Hu Guilin,Fan Jianren.Numerical simulation of micro2particle movement and deposition in human upper respiratory tract[J].Journal of Zhejiang University:Engineering Science,2006,40(7):1164-1167,1256.(in Chinese)
[16] 林江,胡桂林,樊建人.气管支气管树内气流和颗粒运动的大涡模拟[J].工程热物理学报,2007,28(5):805-807.
  Lin Jiang,Hu Guilin,Fan Jianren.Large eddy simulation of airflow and particle motion in tracheobronchial tree[J].Journal of Engineering Thermophysics,2007,28(5):805-807.(in Chinese)
[17] Luo H Y,Liu Y.Particle deposition in a CT-scanned human lung airway[J].Journal of Biomechanics,2009,42(12):1869-1876.
[18] Wang S M,Inthavong K,Wen J,et al.Comparison of micron-and nanoparticle deposition patterns in a realistic human nasal cavity[J].Respiratory Physiology &Neurobiology,2009,166(3):142-151.
[19] 由长福,李光辉,祁海鹰,等.可吸入颗粒物近壁运动的直接数值模拟[J].工程热物理学报,2004,25(2):265-267.
  You Changfu,Li Guanghui,Qi Haiying,et al.DNS of inhalable particle motion in channel flow[J].Journal of Engineering Thermophysics,2004,25(2):265-267.(in Chinese)
[20] Kleinstreuer C,Zhang Z.Targeted drug aerosol deposition analysis for a four-generation lung airway model with hemispherical tumors[J].Journal of Biomechanical Engineering,2003,125(2):197-206.
[21] Yang X L,Liu Y,Luo H Y.Respiratory flow in obstructed airways[J].Journal of Biomechanics,2006,39(15):2743-2751.
[22] Luo H Y,Liu Y,Yang X L.Particle deposition in obstructed airways[J].Journal of Biomechanics,2007,40(14):3096-3104.
[23] Weibel E R.Morphometry of the human lung[M].New York:Academic Press,1963:5-77.
[24] Kleinstreuer C,Zhang Z,Kim C S.Combined inertial and gravitational deposition of microparticles in small model airways of a human respiratory system[J].Journal of Aerosol Science,2007,38(10):1047-1061.
[25] Fenn W O,Rahn H.Handbook of physiology[M].Washington DC:American Physiological Society,1965:32-63.
[26] Kim C S,Fisher D M.Deposition characteristics of aerosol particles in sequentially bifurcating airway models[J].Aerosol Science and Technology,1999,31(2/3):198-220.
[27] Zhang L,Asgharian B,Anjilvel S.Inertial deposition of particles in the human upper airway bifurcations[J].Aerosol Science and Technology,1997,26(2):97-110.

备注/Memo

备注/Memo:
作者简介:陈晓乐(1986—),男,博士生;钟文琪(联系人),男,博士,研究员,博士生导师,wqzhong@seu.edu.cn.
基金项目:国家重点基础研究发展计划 (973计划) 资助项目(2010CB732206)、新世纪优秀人才支持计划资助项目(NCET09-0300)、全国优秀博士学位论文资助项目(201040)、东南大学优秀青年教师基金资助项目.
引文格式: 陈晓乐,钟文琪,金保昇.可吸入颗粒污染物在下呼吸道运动和沉积规律的数值模拟[J].东南大学学报:自然科学版,2011,41(2):393-399.[doi:10.3969/j.issn.1001-0505.2011.02.034]
更新日期/Last Update: 2011-03-20