[1]陆荣生,吴卫平,倪中华.原子核磁共振显微检测芯片的磁路设计[J].东南大学学报(自然科学版),2011,41(3):533-537.[doi:10.3969/j.issn.1001-0505.2011.03.020]
 Lu Rongsheng,Wu Weiping,Ni Zhonghua.Development of micro-permanent magnet magnetic circuit for nuclear magnetic resonance microscopy chip[J].Journal of Southeast University (Natural Science Edition),2011,41(3):533-537.[doi:10.3969/j.issn.1001-0505.2011.03.020]
点击复制

原子核磁共振显微检测芯片的磁路设计()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
41
期数:
2011年第3期
页码:
533-537
栏目:
电子科学与工程
出版日期:
2011-05-20

文章信息/Info

Title:
Development of micro-permanent magnet magnetic circuit for nuclear magnetic resonance microscopy chip
作者:
陆荣生吴卫平倪中华
(东南大学江苏省微纳生物医疗器械设计与制造重点实验室,南京 211189)
Author(s):
Lu RongshengWu WeipingNi Zhonghua
(Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189,China)
关键词:
核磁共振芯片单一匀场环永磁体折射定理基尔霍夫定律
Keywords:
nuclear magnetic resonance microscopy chip single shimming permanent magnet flux refraction law Kirchhoff’s law
分类号:
TN949.6
DOI:
10.3969/j.issn.1001-0505.2011.03.020
摘要:
基于磁路设计理论首先设计了一种适用于原子核磁共振显微检测芯片的永磁磁路; 然后根据磁路磁通折射定理和基尔霍夫第一定律对设计的磁路模型进行理论分析,提出了单一匀场环磁路性能优化方法; 最后利用有限元方法分别计算了优化前的磁路、单一匀场环优化后磁路和传统的双匀场环优化后磁路.计算结果表明:相比优化前和采用传统的双匀场环优化后的磁路,采用单一“匀场环”优化后的磁路其性能最优,工作区域内磁场强度和均匀度都得到了极大的提高, 磁场强度达到0.703544 T, 工作区域内磁场均匀度为14×10-6.因此所设计的磁路能够较好地满足原子核磁共振显微检测芯片的需求.
Abstract:
A micro-permanent magnet magnetic circuit specially applied in nuclear magnetic resonance microscopy chip was designed according to the theory of magnet circuit. Based on magnetic flux refraction law and Kirchhoff’s first law, a concept called single shimming is proposed for optimizing the performance of the designed magnet circuit. At last, primary designed magnet circuit, magnet circuit optimized with single shimming and magnet circuit optimized with conventional double shimming are separately computed using Maxwell finite element(Ansoft)simulation. Results show that magnet circuit optimized with ‘single shimming’ has the best performance compared with the other two magnet circuits. Both magnetic field strength and magnetic field homogeneity are improved greatly. A magnetic field strength of 0. 703544 T with magnetic field homogeneity of 14×10-6 in sensitive spot is achieved after optimization. In conclusion, the developed micro-permanent magnet magnetic circuit in this paper meets the demands of nuclear magnetic resonance microscopy chip(NMRM-chip).

参考文献/References:

[1] Whitesides G M.The origins and the future of microfluidics[J].Nature,2006,442(7101):368-373.
[2] Harel E.Magnetic resonance detection:spectroscopy and imaging of lab-on-a-chip[J].Lab on a Chip,2009,9(3):17-23.
[3] Lee H,Sun E,Ham D,et al.Chip-NMR biosensor for detection and molecular analysis of cells[J].Nature Medicine, 2008,14(8):869-874.
[4] Dechow J,Lanz T,Stumber M,et al.Preamplified planar microcoil on GaAs substrates for microspectroscopy[J].Review of Scientific Instruments,2003,74(11):4855-4857.
[5] Li Y,Ahmad M M,Hand J W.Microcoils on structured silicon substrates for magnetic resonance detection[J].IEEE Sensors Journal,2007,7(9):1362-1369.
[6] Trumbull J D,Glasgow I K,Beebe D J,et al.Integrating microfabricated fluidic systems and NMR spectroscopy[J].IEEE Trans Biomed Eng,2000,47(1):3-7.
[7] Dechow J,Forchel A,Lanz T,et al.Fabrication of NMR-microsensors for nanoliter sample volumes[J].Microelectronic Engineering,2000,53(1/2/3/4):517-519.
[8] Massin C,Boero G,Vincent F,et al.High-Q factor RF planar microcoils for micro-scale NMR spectroscopy[J].Sensors and Actuators A,2002,97-98:280-288.
[9] Massin C,Vincent F,Homsy A,et al.Planar microcoil-based microfluidic NMR probes[J].Journal of Magnetic Resonance,2003,164(2):242-255.
[10] Ehrmann K,Pataky K,Stettler M,et al.NMR spectroscopy and perfusion of mammalian cells using surface microprobes[J].Lab on a Chip,2007,7(3):381-383.
[11] Sorli B,Chateaux J F,Pitaval M,et al.Micro-spectrometer for NMR:analysis of small quantities in vitro[J].Meas Sci Technol,2004,15(5):877-880.
[12] Liu Y,Sun N,Lee H,et al.COMS mini nuclear magnetic resonance system and its application for biomolecular sensing[C]//IEEE International Solid-State Circuits Conference. San Francisco,USA,2008:140-141,602.
[13] Sun N,Yoon T J,Lee H,et al.Palm NMR and one-Chip NMR[C]//IEEE International Solid-State Circuits Conference.San Francisco,USA,2010:488-490.
[14] Eidmann G,Savelsberg R,Blümler P,et al.The NMR MOUSE,a mobile universal surface explorer[J].Journal of Magnetic Resonance,1996,122(1):104-109.
[15] Perlo J,Demas V,Casanova F,et al.High-resolution NMR spectroscopy with a portable single-sided sensor[J].Science,2005,308(5726):1279.
[16] Marble A E,Mastikhin I V,Colpitts B G,et al.A compact permanent magnet array with a remote homogenous field[J].Journal of Magnetic Resonance,2007,186(1):100-104.
[17] 赵凯华 陈熙谋.电磁学[M].北京:高等教育出版社,2003.
[18] 武海澄.MRI磁体系统的计算机辅助设计研究[D].合肥:中国科学技术大学信息科学技术学院,2007.
[19] 王以真.实用磁路设计[M].北京:国防工业出版社,2008.
[20] Kim D H,Kim B S,Lee J H,et al.3-D optimal shape design of ferromagnetic pole in MRI magnet of open permanent-magnet type[J].IEEE Transactions on Applied Auperconductivity,2002,12(1):1467-1470.
[21] Battocletti J H,Kamal H A,Myers T J,et al.Systematic passive shimming of a permanent magnet for P-31 NMR spectroscopy of bone mineral[J].IEEE Transactions on Magnetics,1993,29(4):2139-2151.

备注/Memo

备注/Memo:
作者简介:陆荣生(1985—),男,博士生;倪中华(联系人),男,博士,教授,博士生导师,nzh2003@seu.edu.cn.
基金项目:国家自然科学基金重大研究计划(培育)资助项目(91023024)、东南大学重大科学研究引导基金资助项目.
引文格式: 陆荣生,吴卫平,倪中华.原子核磁共振显微检测芯片的磁路设计[J].东南大学学报:自然科学版,2011,41(3):533-537.[doi:10.3969/j.issn.1001-0505.2011.03.020]
更新日期/Last Update: 2011-05-20