[1]张捷,李新德,戴先中.基于立体靶标的摄像机标定方法[J].东南大学学报(自然科学版),2011,41(3):543-548.[doi:10.3969/j.issn.1001-0505.2011.03.022]
 Zhang Jie,Li Xinde,Dai Xianzhong.Camera calibration method based on 3D board[J].Journal of Southeast University (Natural Science Edition),2011,41(3):543-548.[doi:10.3969/j.issn.1001-0505.2011.03.022]
点击复制

基于立体靶标的摄像机标定方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
41
期数:
2011年第3期
页码:
543-548
栏目:
计算机科学与工程
出版日期:
2011-05-20

文章信息/Info

Title:
Camera calibration method based on 3D board
作者:
张捷李新德戴先中
(东南大学自动化学院,南京 210096)
Author(s):
Zhang JieLi XindeDai Xianzhong
(School of Automation, Southeast University, Nanjing 210096,China)
关键词:
摄像机标定立体靶标透镜畸变投影矩阵LM优化
Keywords:
camera calibration 3D calibration board lens distortion transform matrix Levenberg-Marquardt (LM) optimization
分类号:
TP391
DOI:
10.3969/j.issn.1001-0505.2011.03.022
摘要:
为获取视觉测量系统中二维图像到三维空间位置的变换关系,提出一种基于立体靶标的摄像机标定方法.针对无畸变小孔成像模型,使用最小二乘法求解初始投影矩阵后通过LM准则对其优化; 根据多张图像对应的投影矩阵,求解摄像机内参数及各相应外参数; 引入二阶径向畸变模型,建立理想图像坐标和实际图像坐标间的方程求解初始畸变系数; 使用LM准则全局优化,得到更精确的摄像机内外参数及畸变因子.实验结果表明:仿真图像数据中高斯噪声小于0.5像素时,摄像机等效焦距误差小于0.1%,图像主点误差小于0.5像素; 在相同噪声等级下,标定使用图像数越多获得的参数标准差越小; 该方法标定参数对应的位置残差小于其他立体靶标标定方法.该标定方法具有较高的标定精度,且增加标定图像数有助于抑制噪声获取稳定的摄像机参数.
Abstract:
A method of camera calibration based on 3D calibration board, which is used for vision measuring system, is proposed in this paper. Transform matrix is worked out with least square method on an ideal pin-hole camera model and then optimized by Levenberg-Marquardt(LM) algorithm. According to several transform matrices, initial camera intrinsic parameter matrix and corresponding extrinsic parameter matrices are solved. Then, the distortion coefficient is estimated according to the relationship between the real image and the detected image coordinate with initial camera parameter fixed. At last, LM algorithm is applied to the global optimization and the more accurate intrinsic and extrinsic parameters are obtained. Experimental results indicate that error of equivalent focal length is less than 0. 1% and error of principal point is less than 0. 5 pixel when Gaussian noise with less than 0. 5 pixel standard deviation is added to the simulation image data. Under the same Gaussian noise level the more the pictures used, the smaller the standard deviation of camera parameters. Compared with other calibration methods 3D calibration board proposed in this paper is more accurate. More stable camera parameters can be obtained by using more pictures of the calibration board.

参考文献/References:

[1] Wei Qingchao,Zhou Guoqing,Zhu Qing,et al.On DLT method for CCD camera calibration[C]//Proceedings of ICSP.Beijing,China,1996:883-885.
[2] Liu Quan,Su Hang.Correction of the asymmetrical circular projection in DLT camera calibration[C]//International Congress on Image and Signal Processing.Sanya,China,2008:344-348.
[3] Tsai R Y.A versatile camera calibration technique for high accuracy 3D machine vision metrology using off the shelf TV cameras and lenses[J].IEEE Journal of Robotics and Automation,1987,3(4):323-344.
[4] 潘静,李为民.基于3D立体靶标的摄像机标定算法[J].机械与电子,2007(5):3-5.
  Pan Jing,Li Weimin.Algorithm of implementing 3D calibration board-based camera calibration[J].Machinery &Electronics,2007(5):3-5.(in Chinese)
[5] 夏艳,苏中,吴细宝.双目视觉测量系统的标定及三维测量[J].中国图像图形学报,2008,13(7):1298-1302.
  Xia Yan,Su Zhong,Wu Xibao.Calibration of binocular vision system and its application in 3D measurement[J].Journal of Image and Graphics,2008,13(7):1298-1302.(in Chinese)
[6] Zhang Zhengyou.Flexible camera calibration by viewing a plane from unknown orientations[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision.Kerkyra,Greece,1999:666-673.
[7] 杨长江,孙凤梅,胡占义.基于平面二次曲线的摄像机标定[J].计算机学报,2000,5(23):541-547.
  Yang Changjiang,Sun Fengmei,Hu Zhanyi.Planar conic based camera calibration[J].Chinese Journal of Computers,2000,5(23):541-547.(in Chinese)
[8] Lenz R K,Tsai R Y.Techniques for calibration of the scale factor and image center for high accuracy 3D machine vision metrology[C]//Proceedings of IEEE International Conference on Robotics and Automation.Raleigh,NC,USA,1987:68-75.
[9] Wei G,Ma S.Implicit and explicit camera calibration:theory and experiments[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,16(5):469-480.
[10] 蔡自兴.机器人学[M].北京:清华大学出版社,2000:48-58.

相似文献/References:

[1]王年,范益政,梁栋,等.一种基于等腰梯形的摄像机自标定方法[J].东南大学学报(自然科学版),2005,35(2):195.[doi:10.3969/j.issn.1001-0505.2005.02.007]
 Wang Nian,Fan Yizheng,Liang Dong,et al.Method of camera self-calibration based on isosceles trapezoid[J].Journal of Southeast University (Natural Science Edition),2005,35(3):195.[doi:10.3969/j.issn.1001-0505.2005.02.007]

备注/Memo

备注/Memo:
作者简介:张捷(1987—),男,硕士生;李新德(联系人),男,博士,副教授,xindeli@seu.edu.cn.
基金项目:国家自然科学青年基金资助项目(60804063)、江苏省自然科学基金资助项目(BK201022557)、江苏省科技成果转化专项资金资助项目(BA2007058).
引文格式: 张捷,李新德,戴先中.基于立体靶标的摄像机标定方法[J].东南大学学报:自然科学版,2011,41(3):543-548.[doi:10.3969/j.issn.1001-0505.2011.03.022]
更新日期/Last Update: 2011-05-20